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Abstract: Prey-predator models with a refuge effect are particularly significant in ecology. The two common

conceptions of refuge in the literature are continual refuge and refuge pro-portionate to prey. Academics are

already paying attention to new types of refuge concepts. Prey-predator interaction has become a prominent issue

in recent biomathe-matical studies due to its environmental influence. In this paper, the habitat complexity of a

predator-prey model with Hassell-Varley type functional response is considered. For this, we focused our study

on the question of existence and uniqueness in Sec. 2. And Sec. 3 is devoted to show a generalized stability. Note

that this representation also al-lows us to generalize the results obtained recently in the literature. In Sec. 4, we

have studied the numerical algorithm for the suggested problem. The paper is ended by two examples illustrating

our results. 

Keywords: Predator-prey model, Hassell-Varley type functional response. 

1. Introduction of the model 

In ecology, prey-predator models featuring a refuge effect are extremely important. In the available literature,

the most prominent notions of refuge are constant refuge and refuge proportionate to prey. New forms of refuge

concepts are already drawing academics’ attention. Because of its impact on the environment, prey-predator

interaction has become a hot topic in the contemporary biomathematical studies. Many researchers have worked

in investigatingvarious aspects of the dynamical behaviour of this subject matter in ecology, as well as the 

accompanying growth of population models. Some prey populations benefit from natural protection in the form

of refuge dimensions. In other cases, several aspects allow for a longer prey-predator contact, lowering the risk

of extinction owing to predation. Many scholars in the discrete area of waste concepts have studied this

phenomenon extensively. We refer for reference to the work in[1–5].  



Community and Ecology Volume 1 Issue 1 (2023)                                                 2  /  

 

 

The nature of the birth process is a continuous matter in populations with overlapping gen-erations; thus,

the predator-prey interaction is usually developed using deterministic models such as ordinary differential

equations. Several species, such as monocarpic plants and semel-parous animals, exhibit discrete nonoverlapping

generation characters as well as predictable birth and breeding seasons. Difference equations or other forms, such

as discrete-time map-pings, are used to represent their interactions. The dynamical behaviour of a discrete-time 

prey-predator model is typically more sophisticated than that of the equivalent continuous-time models[6–9]. 

Different mathematical tools were used for the considerations of the predator prey models. For example,

in[10] the Allee effect and the fear effect are proven in a predator-prey paradigm. For the boundedness, they applied

the comparison principle. The model’s equilibrium point and nonzero equilibrium point were studied, as well as

the local stability conditions were examined. The cross-sectional conditions of transcritical bifurcation and Hopf

bifurcation were also determined using the Sotomayor theorem. While in[11] the authors proposed and analysed

an age-structure predator prey dynamical system in which predators were classified into juvenile and mature

predators utilising a MonodHaldane-type response function. The stability and bifurcation of the system were

explored both analytically and quantitatively. By creating a suitable Lyapunov function, we studied global

stability around the interior equilibrium point E . Furthermore, in[12] the authors investigated the role of

diffusion and nonlocal prey eating on the population distributions of an interacting generalist predator and its

focused prey species. For this, they first used linear analysis to derive the criteria that lead to Turing instability.

And with the usage of a weakly nonlinear analysis, they obtained acubic Stuart-Landau equation that governs

the amplitude of the generated patterns near the Turing bifurcation boundary. In[13], the authors studied fear,

refuge, and harvesting elements are in a predatorprey model with infection in the prey population and evaluated

an expression for the fundamental reproduction number. The global stability of disease-free and endemic

equilibria was determined based on reproduction number. They also discovered that by regulating the value of

the basic reproduction number less than one, sickness is eliminated from the system. In addition, transcritical

and Hopf bifurcations were investigated for the deterministic model. In[14] predator-prey system with a Holling

type function response and prey refuge was provided. The dynamical behaviour of the considered system was

investi-gated by the help of analytical methodologies, including stability, limit cycle, and bifurcation. The

findings reveal that the shape of the functional response has a significant impact on the system’s dynamics. The

intriguing conclusion is that the prey refuge has a destabilising effect in some circumstances. In[15] the researchers

explored the effects of predator harvesting in a two-dimensional preypredator model with Holling type III

functional response. Their major goal was to investigate how the dynamical behaviour of the preypredator model

changes when non-linear predator harvesting is present. As the parameters are changed, the model

system displays complicated dynamics. Under a specific parametric  condition with non-negative be- 
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S. Kundu et al. 3ginning conditions, they established the positivity and boundedness of the solutions. In term

sof system parameters, the presence and stability criterion of several equilibrium points w

asexamined. Under various parametric conditions, the system exhibits saddle-node bifurcati

on,transcritical bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation. For more de

tail,we refer the readers to [16–22].
In [33], Hassell and Varley introduced a general predator-prey system (PPS), in whicht

he functional response dependents on the predator density in different way. It is calledaH

assell–Varley (HV) type functional response which takes the following form

du1

dx
� u1�r1�1 �

u1

ξ�1 � η�
 � ζ�1 � a1�u2

u1 � a2ζ�1 � a1�u2
σHV

�,
du2

dx
� u2� �hζ�1 � a1�u1

u1 � a2ζ�1 � a1�u2
σHV

� r2�,
(1.1)

where σHV "  �� �0, 1� is called the HV constant (detail description of the parameter can be
seen in [33]). For terrestrial predators that form a fixed number of tight groups, it is oftenr

easonable to assume σHV �
1

2
. For aquatic predators that form a fixed number of tights

groups, σHV �
1

3
may be more appropriate. It is worth pointing out that during the course

of the predator-prey interaction when predators do not form groups, one can assume that the
HV constant is equal to 1, that is, σHV � 1. For better description, the complex problem of
the interaction between prey and predator has been considered via discrete models, the reader
may refer to [31–36] for more details.

The aim of this work is to formulate a discrete prey-predator model based on the same
assumptions as (1.1). There are different reasons for using discrete mathematical models.
While they are often preferred due to their computational convenience, they are also more
appropriate for modelling non-overlapping generations, Moreover, using discrete-time models
is more efficient for computation and numerical simulations. By analysis it is proved that
the discrete-time model has different properties and structures compared with the continuous
one.

In this paper, we consider the following discrete-time predator-prey system:

�u1�n�1 � �u1�n �r1�1 �
�u1�n

ξ�1 � η�
 � ζ�1 � a1� �u2�n�u1�n � a2ζ�1 � a1� �u2�σHV

n

�,

�u2�n�1 � �u2�n � �hζ�1 � a1� �u1�n�u1�n � a2ζ�1 � a1� �u2�σHV

n

� r2�,
(1.2)

assume σHV � 1.

Here we focused our study on the question of existence and uniqueness in Sec. 2. And

Sec. 3 is devoted to show a generalized stability. Note that this representation also allows

us to generalize the results obtained recently in the literature. In Sec. 4, we have studied

the numerical algorithm for the suggested problem. The paper is ended by two examples

illustrating our results. The work is summarised in 5. In future, we aim for reconsideration

of the model in fractional version, with the help of the work in [22–30].
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4
2 The dynamic behavior of the system

2.1 The fixed points and their feasibility

The fixed pointscan be obtained by solving the following nonlinear system

u1 � u1�r1�1 �
u1

ξ�1 � η�
 � ζ�1 � a1�u2

u1 � a2ζ�1 � a1�u2

�,
u2 � u2� �hζ�1 � a1�u1

u1 � a2ζ�1 � a1�u2

� r2�.
(2.1)

Solving the system (2.1) we get the fixed points like:

(i) The trivial fixed point E0�0, 0�, which is always feasible.

(ii) The predator free fixed point E1�ξ�1 � η�, 0�, which is feasible if 0 $ η $ 1.

(iii) The coexistence fixed point E2�u�1 , u�2�, where

u
�

1 � ξ�1 � η� v1 �
1
a2r1

� r2

�hζ�1 � a1� � 1
|

u
�

2 �
ξ�1 � η�� �hζ�1 � a1� � r2�

a2�1 � a1�r2ζ
v1 �

�hζ�1 � a1� � r2

a2 �hζr1�1 � a1� | , (2.2)

which is feasible if 0 $ a1 $ 1 � r2
�hζ�1�a2r1�

and 0 $ r2 $ �hζ�1 � a1�.
2.2 Stability analysis

In this section we shall discuss the local stability analysis of the system (1.2) for each of the
fixed points. For system (1.2) the Jacobian matrix is as follows

J�u1, u2� �
Ẑ̂̂̂
^̂̂̂̂̂
^̂̂̂̂
\

r1 v1 �
2u1�1 � η�ξ| � a2ζ

2�1 � a1�2
u

2
2�u1 � a2ζ�1 � a1�u2�2

�
ζ�1 � a1�u2

1�u1 � a2ζ�1 � a1�u2�2

a2 �hζ
2�1 � a1�2

u
2
2�u1 � a2ζ�1 � a1�u2�2

�hu�1 � a1�u2
1�u1 � a2ζ�1 � a1�u2�2

� r2

[_______________]
.

(2.3)
For the Jacobian matrix (2.3), we have the following characteristic equation

¶λI � J�u1, u2�¶ � 0,

hence

λ
2
� Trace�J�λ �Det�J� � 0. (2.4)
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Here λ is the eigenvalue of J�u1, u2� and Trace(J) and Det(J) are the trace and determinant
of the Jacobian matrix J�u1, u2� respectively, where

Trace �J�u1, u2�� � r1 v1 �
2u1

ξ�1 � η�| � a2ζ
2�1 � a1�2

u
2
2�u1 � a2ζ�1 � a1�u2�2

�
�hζ�1 � a1�u2

1�u1 � a2ζ�1 � a1�u2�2
� r2,

Det �J�u1, u2�� � r1 v1 �
2u1

ξ�1 � η�| w
�hζ�1 � a1�u2

1�u1 � a2ζ�1 � a1�u2�2
� r2}

�
r2a2ζ

2�1 � a1�2
u

2
2�u1 � a2ζ�1 � a1�u2�2

.

Therefore, depending upon the value of Det(J) we can classified the system (1.2), i.e., if

i) Det(J)$ 1, then the dynamical system is called dissipative.

ii) Det(J)� 1, then the dynamical system is called conservative.

iii) Otherwise, the dynamical system is called undissipated.

In order to stability analysis of the fixed points of the system (1.2), first we give the follow-
ing lemma that can be easily proved by the relation between roots and coefficients of the
characteristic Eq. (2.4) of the system (1.2).

Lemma 2.1. Let G�λ� � λ
2
� αλ � β. Suppose that G�1� % 0; λ1, λ2 are the two roots of

G�λ� � 0. Then

i) ¶λ1¶ $ 1 and ¶λ2¶ $ 1 iff G��1� % 0 and β $ 1.

ii) ¶λ1¶ $ 1 and ¶λ2¶ % 1 or ¶λ1¶ % 1 and ¶λ2¶ $ 1 iff G��1� $ 0.

iii) ¶λ1¶ % 1 and ¶λ2¶ $ 1 iff G��1� % 0 and β % 1.

iv) λ1 � �1 and λ2 j 1 iff G��1� � 0 and α j 0, 2.

v) λ1 and λ2 are complex and ¶λ1¶ � ¶λ2¶ iff α
2
� 4β $ 0 and β � 1.

Lemma 2.2. Let λ1, λ2 are two roots of (2.4), are called the eigenvalues of fixed point �ū1, ū2�
then:

i) A fixed point �ū1, ū2� is called sink if ¶λ1¶ $ 1 and ¶λ2¶ $ 1, i.e., the sink is locally
asymptotically stable.

ii) A fixed point �ū1, ū2� is called source if ¶λ1¶ % 1 and ¶λ2¶ % 1, i.e., the source is locally
unstable.
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iii) A fixed point �ū1, ū2� is called saddle if ¶λ1¶ % 1 and ¶λ2¶ $ 1 or ¶λ1¶ $ 1 and ¶λ2¶ % 1.

iv) A fixed point �ū1, ū2� is called non-hyperbolic if either ¶λ1¶ � 1 or ¶λ2¶ � 1.

Theorem 2.3. The fixed point E0�0, 0� is a (i) sink if rj $ 1; (ii) source if rj % 1; (iii)
non-hyperbolic if rj � 1; (iv) saddle for other values of rj here j � 1, 2.

Proof. The Jacobian matrix for the the fixed point E0 becomes

J�E0� � �r1 0
0 �r2


 ,
and the associated eigenvalues are λ1 � r1, λ2 � �r2. Now following the lemma 2.2, we can
say that E0 is a sink, source, non-hyperbolic if ri $ 1, ri % 1 and ri � 1 holds respectively,
i � 1, 2. For other values of ri, E0 is called a saddle point.

Theorem 2.4. The fixed point E1 �ξ�1 � η�, 0� is a i) sink if r1 $ 1,

1 �
1 � r2

�hζ
$ a1 $ 1 �

1 � r2

�hζ
;

ii) source if r1 % 1,

1 �
1 � r2

�hζ
% a1 % 1 �

1 � a2

�hζ
;

iii) non-hyperbolic if r1 � 1, 1 � 1�r2
�hζ

� a1 or a1 � 1 � 1�r2
�hζ

; and iv) saddle for other values of
parameters.

Proof. The Jacobian matrix for the the fixed point E0 becomes

J�E1� �
Ẑ̂̂̂
^̂̂\
�r1 �ζ�1 � a1�
0 �r2 � �hζ�1 � a1�

[_______] ,
and the associated eigenvalues are λ1 � �r1, λ2 � �r2 � �hζ�1 � a1�. Now following the
lemma 2.2, we can say that E1 is a sink, source, non-hyperbolic if r1 $ 1,

1 �
1 � r2

�hζ
$ a1 $ 1 �

1 � r2

�hζ
,

r1 % 1,

1 �
1 � r2

�hζ
% a1 % 1 �

1 � r2

�hζ

and r1 � 1, 1 � 1�r2
�hζ

� a1 or a1 � 1 � 1�r2
�hζ

holds respectively. For other values of parameters

E1 is called a saddle point.
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Now, from condition (iii) of theorem 2.4, for r1 � 1, we have λ1 � �1 and λ2 j �1, 1.
Therefore, let us define the sets AE1

and BE1
, where all the parameters located, as:

AE1
� v�r1, ξ, ζ,η, a1, a2, r2, �h� � 0 $ r1 � 1, a1 % 1 �

1 � r2

�hζ
,

a1 j 1 �
1 � r2

�hζ
; 0 $ a1 $ 1|,

BE1
� v�r1, ξ, ζ,η, a1, a2, r2, �h� � a1 � 1 �

1 � r2

�hζ
, r1 j 1, r1 % 1; 0 $ a1 $ 1|.

Now if the parameters moving in the very small neighborhood of AE1
and BE1

, then the
fixed point E1 will passes through a flip bifurcation. Also, there is a center manifold u2 �

0 of system (1.2) at E1 [? ]. Hence in this case the predator becomes extinct and the
prey undergoes the period doubling bifurcation to chaos in the sense of Li-York by choosing
bifurcation parameter ‘r1’.

Theorem 2.5. If 0 $ a1 $ 1 � r2
�hζ�1�a2r1�

and 0 $ r2 $ �hζ�1 � a1�, then the coexistence fixed

point E2�u�1 , u�2� is called

(i) sink if, a1 % 1 � 2r2
�hζ�1�a2r1�

and 0 $ r2 $ �hζ�1 � a1�;

(ii) source if, 0 $ a1 $ 1 � 2r2
�hζ�1�a2r1�

and 0 $ r1 $ �hζ�1 � a1�;

(iii) non-hyperbolic if, a1 � 1 � 2r2
�hζ�1�a2r1�

and 0 $ r2 $ �hζ�1 � a1�.

Proof. The expression for Trace(J) and Det(J) for the Jacobian matrix (2.3) has been given
after Eq. (2.4). After computing the value of Trace(J�E2�) and Det(J�E2�) we may get the
following conditions

I) 1�Trace(J�E2�)�Det(J�E2�)% 0,

II) 1�Trace(J�E2�)�Det(J�E2�)% 0,

III) 1�Det(J�E2�)% 0.

If all the above conditions holds simultaneously for the fixed point E2, we can say that it is
stable. After some computations we’ll get the results (i)-(iii). Now, from condition (iii) of
theorem 2.5 and from Lemma 2.1, we can see that one of the eigenvalues of the positive fixed
point E2 is �1 and the other is neither 1 nor �1. Therefore, let us define the sets ĀE2

, where
all the parameters located, as

ĀE2
� v�r1, ξ, ζ,η, a1, a2, r2, �h, σ� � a1 � 1 �

2r2

E�1 � a2r1� ,
0 $ r2 $ �hζ�1 � a1�; 0 $ a1 $ 1|.
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8 S. Kundu et al.

3 Bifurcation

3.1 Flip bifurcation

In this section, based on the previous analysis, we discuss the flip bifurcation of the predator
free fixed point E1. We choose parameter a1 as a bifurcation parameter to study the flip
bifurcation at the equilibrium point by using center manifold theorem and bifurcation the-

ory in [31, 32]. We first discuss the flip bifurcation of system (2.1) at E1 when parametersvar

y in the small neighborhood of ĀE1
. Taking parameters �ŕ1, ξ́, ζ́, ή, á1, á2, ŕ2, �́h�, arbitrar-ily

from ĀE1
, for simplicity we consider system (2.1) with �r1, ξ, ζ,η, a1, a2, r2, �h� in place of�ŕ1, ξ́, ζ́, ή, á1, á2, ŕ2, �́h�, which is described by

u1 � u1�r1�1 �
u1

ξ�1 � η�
 � ζ�1 � a1�u2

u1 � a2ζ�1 � a1�u2

�,
u2 � u2� �hζ�1 � a1�u1

u1 � a2ζ�1 � a1�u2

� r2�.
(3.1)

Giving a perturbation r̄1 on parameter r1, we consider a perturbation of model (3.1) as follows

u1 � u1��r̄1 � r1��1 �
u1

ξ�1 � η�
 � ζ�1 � a1�u2

u1 � a2ζ�1 � a1�u2

�,
u2 � u2� �hζ�1 � a1�u1

u1 � a2ζ�1 � a1�u2

� r2�.
(3.2)

where, ¶r̄1¶ $$ 1. Let v1 � u1 � ú1 and v2 � u2 � ú2. Then we transform the fixed point E1 of
system (3.2) into origin. We have

u1 � �v1 � ú1���r1 � r̄1��1 �
�v1 � ú1�
ξ�1 � η� 
 � ζ�1 � a1��v2 � ú2��v1 � ú1� � a2ζ�1 � a1��v2 � ú2��,

u2 � �v2 � ú2�� �hζ�1 � a1��v1 � ú1��v1 � ú1� � a2ζ�1 � a1��v2 � ú2� � r2�.
(3.3)

Expanding system (3.3) as Taylor series at �v1, v2, r̄1� � �0, 0, 0� up to second order, then it
becomes the following model

v1 � d11v1 � d12v1 � d13v
2
1 � d14v1v2 � e12v1r̄1 � e13v

2
1r̄1 �O�v1, v2�3

,

v2 � d21v1 � d22v2 � d23v
2
1 � d24v1v2 �O�v1, v2�3

,
(3.4)

where, d11 � r1 �
2r1

ξ�1�η�
ú1, d12 � ζ�1 � a1�, d13 � �r1,

d14 �
ζ�1 � a1�

ú1
�
ζ�1 � a1�2

ú1
�

u1�1 � a1�
ú1

,
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e12 � 1 � 2ú1, e13 � �1 � η, d21 � 2ξ�1 � η�, d22 � �r2 � �hζ�1 � a1�, d23 � �2r2 and

d24 �
ζ�1 � a1�

ú1
�
ζ�1 � a1�2

ú1
�
a1ζ

2�1 � a1�
ú1

.

We construct an invertible matrix as

Υ � � d12 d12

�1 � d11 λ1 � d11



and use the transformation

�v1

v2

 � Υ �u1

u2

 .

The model (3.4) becomes into the following form

�u1

u2

 � ��1 0

0 λ1

 �u1

u2

 � �%1�v1, v2, r̄1�

%2�v1, v2, r̄1�
 ,
where

%1�v1, v2, r̄1� � 1

Det�Υ� t�λ1 � d11�d13v
2
1 � �λ1 � d11�d14v1v2 �O�¶v1¶, ¶v2¶, ¶r̄1¶�z ,

%2�v1, v2, r̄1� � 1

Det�Υ� t�1 � d11�d13v
2
1 � ��1 � d11�d14 � d12d24�v1v2 �O�¶v1¶, ¶v2¶, ¶r̄1¶�z .

Now, we determine the center manifold Ξ
c�0, 0� of (3.4) at fixed point �0, 0� in small neighbor-

hood of r̄1 � 0. By center manifold theorem, we can obtain the approximate representation
of the center manifold Ξ

c�0, 0� as follows

Ξ
c�0, 0� � t�u1, u2� � u2 � τ0r̄1 � τ1u

2
1 � τ2u1r̄1 � τ3r̄

2
1 �O�¶u1¶, ¶r̄1¶�3z ,

where O�¶u1¶, ¶r̄1¶�3
is a function of �u1, r̄1�, at least of the third order and τ0 � τ2 � τ3 � 0,

τ1 �
1

Det�Υ��λ1 � 2� t�1 � d11�d13d
2
12 � ��1 � d11�d14 � d12d24�z .

We write now v1, v2 in terms of u1, u2, r̄1 as v1 � d12�u1 � τ1u
2
1�,

v2 � ��1 � d11�u1 � �λ1 � u11�τ1u
2
1.

Therefore the map G
�

which is restricted to the center manifold Ξ
c�0, 0� is

G
��u1� � u1 � %1�v1, v2, r̄1�

� u1 � ι0r̄1 � ι1u
2
1 � ι2u1r̄1 � ι3r̄

2
1 � ι4u

2
1 � r̄1

� ι5u1r̄
2
1 � ι6u

3
1 � ι7r̄

2
1 �O�¶u1¶ � ¶a�1 ¶�3

, (3.5)

where ι0 � ι3 � ι5 � ι7 � 0,

ι1 �
1

Det�Υ��d2
12�λ1 � d11�d13 � d12�1 � d11� r�λ1 � d11�d14 � d12d24x ,
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ι2 �
1

Det�Υ�
d12e12�λ1 � d11�,

ι4 �
1

Det�Υ��d2
12d13�λ1 � d11� � d12�1 � d11� r�λ1 � d11�d14 � d12d24x

� d11d12e12�1 � d11�2�λ1 � d11� ,
ι6 �

1

Det�Υ� �2d11d
2
12d13�λ1 � d11� � d11d12�λ1 � 1 � 2d11� r�λ1 � d11�d14 � d12d24x .

In order to undergo a flip bifurcation for (3.5), we require that two discriminatory quantities
m1 and m2 are not zero, where

`1 � � ∂
2
G

∂u1∂r̄1
�

1

2

∂G

∂r̄1
�
∂

2
G

∂u2
1

� »»»»»»»»�0,0� � ι0ι1 � ι2 j 0,

`2 � �1

6

∂
2
G

∂u2
1

�
1

4
� ∂G
∂u1


2� »»»»»»»»�0,0� � ι6 � ι
2
1.

Thus from the above analysis and the theorem [32], we obtain the following result.

Theorem 3.1. If `1 j 0, then the model (3.1) undergoes a flip bifurcation at the predator free
equilibrium point E1 when the parameter a1 varies in the small neighborhood of the origin.
Moreover, if `1 % 0($ 0), then the period 2 points that bifurcate from E1 are stable (unstable).

3.2 Hopf-bifurcation

In this section, we shall discuss the Hopf-bifurcation of the positive fixed point E
��u�1 , u�2�

if parameters vary in the small neighborhood of ĀE� . We choose the parameter ‘a1’ as a
bifurcation parameter to study the Hopf-bifurcation of E

��u�1 , u�2� by using center manifold

theorem and bifurcation theory [31, 32], when parameters vary in the small neighborhood ofĀE
� . Our system is

u
¬

1 � u1�r1�1 �
u1

ξ�1 � η�
 � ζ�1 � a1�u2

u1 � a2ζ�1 � a1�u2

�,
u
¬

2 � u2� �hζ�1 � a1�u1

u1 � a2ζ�1 � a1�u2

� r2�.
(3.6)

Now the characteristic equation for the system (3.6) at E
��u�1 , u�2� is given by

λ
2
� Tr�J�λ �Det�J� � 0,
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where,

Tr�J�E��� � r1 v1 �
2u

�

1

ξ�1 � η�| � a2ζ
2�1 � a1�2

u
�
2

2�u�1 � a2ζ�1 � a1�u�2�2

�
�hζ�1 � a1�u�2

1�u� � a2ζ�1 � a1�u�2�2
� r2,

Det�J�E��� � r1 v1 �
2u

�

1

ξ�1 � η�| w
�hζ�1 � a1�u�2

1�u�1 � a2ζ�1 � a1�u�2�2
� r2}

�
r2a2ζ

2�1 � a1�2
u2y

�
2

�u�1 � a2ζ�1 � a1�u�2�2
.

The eigenvalues of E
�

are a pair of complex conjugate numbers λ and λ̄ with modulus 1,
where,

λ �
Tr�J� �Ô

Tr�J�2
� 4Det�J�

2
.

Giving a perturbation a
�

1 of parameter a1, we consider a perturbation of model (3.6) as follows

u1 � u1�r1�1 �
u1

ξ�1 � η�
 � ζ�1 � �a1 � a
�

1��u2

u1 � a2ζ�1 � a1�u2

�,

u2 � u2� �hζ�1 � �a1 � a
�

1��u1

u1 � a2ζ�1 � a1�u2

� r2�.
(3.7)

where ¶a�1 ¶ $$ 1. Let v1 � u1 � u
�

1 and v2 � u2 � u
�

2 . Then we transform the fixed point
E
��u�1 , u�2� of system (3.7) into origin. We have

v1 � �v1 � u
�

1��r1�1 �
v1 � u

�

1

ξ�1 � η�
 � ζ�1 � �a1 � a
�

1���v2� � u
�

2�v1 � u�1� � a2ζ�1 � a1��v2 � u�2��,

v2 � �v2 � u
�

2�� �hζ�1 � �a1 � a
�

1���v1 � u
�

1��v1 � u�1� � a2ζ�1 � a1��v2 � u�2� � r2�.
(3.8)

Expanding system (3.8) as taylor series at �v1, v2, a
�

1� � �0, 0, 0� to second order, then it
becomes the following model

v1 � d́11v1 � d́12v2 � d́13v
2
1 � d́14v1v2 � é11v1v2a

�

1 � é12a
�

1 v1

� d́13a
�

1 v2 � é14a
�

1 v
2
1 � é15a

�

1 v
2
2 �O�v1, v2�3

,

v2 � d́21v1 � d́22v2 � d́23v
2
1 � d́24v1v2 � é21v1v2a

�

1 � é22a
�

1 v1

� é23a
�

1 v2 � d́24a
�

1 v
2
1 � d́25a

�

1 v
2
2 �O�v1, v2�3

,

(3.9)
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where

d́11 � r1 �
2r1u

�

1

ξ�1 � η� � ζ�1 � a1�u�1 u
�

2�u�1 � a2ζ�1 � a1�u�2�2
,

d́12 � �
ζ�1�a2�u

�

1

u�1�a2ζ�1�a1�u
�

2
, d́13 � �a2 �

ζ�1�a1�
2
u
�

1

�u�1�a2ζ�1�a1�u
�

2�
2 ,

d́14 �
ζ�1 � a1�

u�1 � a2ζ�1 � a1�u�2 �
ζ�1 � a1�2

u
�

1�u�1 � a2ζ�1 � a1�u�2�2
�

a2ζ
2�1 � a1�u�1�u�1 � a2ζ�1 � a1�u�2�2

,

d́21 �
ζ�1�a1�u

�

2

u�1�a2ζ�1�a1�u
�

2
, d́22 � �r2 �

ζ�1�a1�u
�

2

u�1�a2ζ�1�a1�u
�

2
, d́23 �

ζ�1�a1�
2
u
�

2

�u�1�a2ζ�1�a1�u
�

2�
2 ,

d́24 �
ζ�1 � a1�

u�1 � a2ζ�1 � a1�u�2 �
ζ�1 � a1�2

u
�

1�u�1 � a2ζ�1 � a1�u�2�2
�

a2ζ
2�1 � a1�u�1�u�1 � a2ζ�1 � a1�u�2�2

,

é11 �
a2ζ

2�1 � a1�u�2

1 u
�

2�u�1 � a2ζ�1 � a1�u�2�2
�

ζu
�

1 u
�

2

u�1 � a2ζ�1 � a1�u�2 ,
é12 �

a2ζ
2�1 � a1�u�1 u

�

2�u�1 � a2ζ�1 � a1�u�2�2
�

2a2ζ
2�1 � a1�u�1 u

�

2�u�1 � a1ζ�1 � a1�u�2�2
�

ζu
�

2

u�1 � a2ζ�1 � a1�u�2 ,
é13 �

a2ζ
2�1 � a1�u�2

1�u�1 � a2ζ�1 � a1�u�2�2
�

ζu
�

1

u�1 � a2ζ�1 � a1�u�2 ,
é14 �

2a2ζ
2
�1�a1�u

�

2

�u�1�a2ζ�1�a1�u
�

2�
2 , é15 �

2a2ζ
2
�1�a1�u

�

1

�u�1�a2ζ�1�a1�u
�

2�
2 ,

é21 � �
a2ζ

2�1 � a1�u�2

1 u
�

2�u�1 � a2ζ�1 � a1�u�2�2
�

ζu
�

1 u
�

2

u�1 � a2ζ�1 � a1�u�2 ,
é22 � �

3a1ζ
2�1 � a1�u�1 u

�

2�u�1 � a2ζ�1 � a1�u�2�2
�

ζu
�

1

u�1 � a2ζ�1 � a1�u�2 ,
é23 � �

a2ζ
2�1 � a1�u�2

1�u�1 � a2ζ�1 � a1�u�2�2
�

ζu
�

1

u�1 � a2ζ�1 � a1�u�2 ,
é24 � �

2a2ζ
2
�1�a1�u

�

2

�u�1�a2ζ�1�a1�u
�

2�
2 ,

é25 � �
2a2ζ

2�1 � a1�u�1�u�1 � a2ζ�1 � a1�u�2�2
�

ζ

u�1 � a2ζ�1 � a1�u�2 .
The characteristic equation associated with the linearization of system (3.9) at �v1, v2� � �0, 0�
is given by

λ �
Tr�J�a�1�� �Ô

Tr�J�a�1��2
� 4Det�J�a�1��

2
.

Correspondingly, when ‘a1’ varies in a small neighborhood of a
�

1 � 0 and there we have

¶λ1,2¶ � Det�J�a�1�� 1
2 ,
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and

l �
d¶λ1,2¶

da1

»»»»»»»»a1�a�1 � �
1

2
vr1 �1 �

2�1 � r2�
�h � a2ζ�1 � r2�
|

�
1
2

j 0. (3.10)

In addition it is required that when a
�

1 � 0, λ
i
1,2 j 1, i � 1, 2, 3, 4, which is equivalent to

Tr�J�0�� j �2,�1, 1, 2. (3.11)

Next we study the normal form of (3.9) when a
�

1 � 0. Let r1 � Re�λ�, ζ � Im�λ�, and

Υ � �0 1
ζ r1


 ,
and use the translation

�v1

v2

 � Υ �ũ1

ũ2

 ,

the system (3.9) becomes

�ũ1

ũ2

� �r1 �ζ

ζ r1

 �ũ1

ũ2

 � �f̃�ũ1, ũ2�

g̃�ũ1, ũ2�
 , (3.12)

where,

%̃�ũ1, ũ2� � 1

Det�Υ�� s�r1 � d́11�d́13 � d́12d́23y ũ
2
1

� r�r1 � d́11�d́14 � d́12d́24xũ1ũ2 �O�¶v1¶, ¶v2¶�4�,

%̃2�ũ1, ũ2� � 1

Det�Υ�� s�r1 � d́11�d́13 � d́12d́23y ũ
2
1

� r�r1 � d́11�d́14 � d́12d́24xũ1ũ2 �O�¶v1¶, ¶v2¶�4�.
Now, we can see that (3.12) is exactly in the form on the center manifold, in which the
coefficient l1

[31, 32] is given by

l1 � �Re ��1 � 2λ̄�λ̄2

1 � λ
ι11ι20� � 1

2
�½ι11½2

� ½ι02½2� � Re�λ̄ι21�, (3.13)
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where,

ι20 �
1

8
��%́1�ũ1ũ1

� �%́1�ũ2ũ2
� 2�%́2�ũ1ũ2

� i ��%́2�ũ1ũ1
� �%́2�ũ2ũ2

� 2�%́1�ũ1ũ2
� �,

ι11 �
1

4
��%́1�ũ1ũ1

� �%́1�ũ2ũ2
� i ��%́2�ũ1ũ1

� �%́2�ũ1ỹ� �,
ι02 �

1

8
��%́1�ũ1ũ1

� �%́1�ũ2ũ2
� 2�%́2�ũ1ũ2

� i ��%́2�ũ1ũ1
� �%́2�ỹỹ � 2�%́1�ũ1ũ2

� �,
ι21 �

1

16
��%́1�ũ1ũ1ũ1

� �%́1�ũ1ũ2ũ2
� �%́2�ũ1ũ1ũ2

� �%́2�ũ2ũ2ũ2

� i ��%́2�ũ1ũ1ũ1
� �%́2�ũ1ũ2ũ2

� �%́1�ũ1ũ1ũ2
� �%́1�ũ2ũ2ũ2

� �,
and

�%́1�ũ1ũ1
�

2r�r1 � d́11�d́13 � d́12d́23x
Det�Υ� ,

�%́1�ũ1ũ2
�

�r1 � d́11�d́14 � d́12d́24

Det�Υ� ,

�%́2�ũ1ũ1
�

2r�r1 � d́11�d́13 � d́12d́23x
Det�Υ� ,

�%́2�ũ1ũ2
�

�r1 � d́11�d́14 � d́12d́24

Det�Υ� ,

�%́1�ũ2ũ2
� �%́1�ũ1ũ1ũ2

� �%́1�ũ2ỹũ2
� �%́1�ũ1ũ1ũ2

� �%́1�ũ1ũ2ũ2
� �%́2�ũ2ũ2

� �%́2�ũ1ũ1ũ1
� �%́2�ũ2ũ2ũ2

��%́2�ũ1ũ1ũ2
� �%́2�ũ1ũ2ũ2

� 0.

Theorem 3.2. If condition (3.10) and (3.11) hold and l1 j 0, then system (3.6) undergoes
a Hopf-bifurcation at the equilibrium point E

��u�1 , u�2� when the parameter ‘a1’ varies in the
small neighborhood of the origin. Moreover, if l1 $ 0 �% 0�, then an attracting (repelling)
invariant closed curve bifurcates from the fixed point E

��u�1 , u�2�.

4 Numerical Simulations

In this section, we ar going to present some numerical results for some particular values of the
the parameters associated with the model system (1.2).

Example 4.1. Base on the system (1.2), We consider the

�u1�n�1 � �u1�n �r1�1 �
�u1�n

0.2�1 � η�
 � 0.7�1 � a1� �u2�n�u1�n � 0.7a2�1 � a1� �u2�n�1

�,

�u2�n�1 � �u2�n � 2.8�1 � a1� �u1�n�u1�n � 0.7a2�1 � a1� �u2�n � r2�,
(4.1)
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with ξ � 0.5, ζ � 0.3, �h � 2, σHV � 1 and η � 0.1, r1 � 2.5, r2�x� � 3 � 0.2 sin x,
a1�x� � 2.5�0.4 sin x, a2�x� � 5�0.4 sin x, η�x� � 2�0.3 sin x. By applying the Equation (2.2),
we obtain u

�

1 , u
�

2 for all x " �τ1, τ2� � �0, 28� and ∆1 � 1 � r2
�hζ�1�a2r1�

, ∆2 � �hζ�1 � a1�. One

can check the numerical results in Table 1 and can see 2D plot of them in Fig. 1.

Table 1: Numerical values of u
�

1 , u
�

2 in Example 4.1 ¾x " �0, 28�.
x u

�

1 u
�

2 a1�x� ∆1 r2�x� ∆2

0.00 �0.1964 0.0056 0.2000 1.1905 2.0000 2.2400
0.02 �0.1955 0.0054 0.2070 1.1902 1.9895 2.2205
0.03 �0.1946 0.0052 0.2140 1.1898 1.9791 2.2009
0.05 �0.1936 0.0050 0.2209 1.1895 1.9686 2.1814
0.07 �0.1927 0.0048 0.2279 1.1892 1.9581 2.1619
0.09 �0.1918 0.0046 0.2349 1.1889 1.9477 2.1424
0.10 �0.1909 0.0044 0.2418 1.1885 1.9373 2.1229
0.12 �0.1900 0.0042 0.2487 1.1882 1.9269 2.1035
0.14 �0.1890 0.0040 0.2557 1.1879 1.9165 2.0841
0.16 �0.1881 0.0038 0.2626 1.1875 1.9061 2.0648
0.17 �0.1872 0.0036 0.2695 1.1872 1.8958 2.0455
0.19 �0.1863 0.0034 0.2763 1.1869 1.8855 2.0263
0.21 �0.1854 0.0032 0.2832 1.1865 1.8753 2.0071
0.23 �0.1845 0.0030 0.2900 1.1862 1.8650 1.9881
0.24 �0.1836 0.0028 0.2968 1.1858 1.8548 1.9690
0.26 �0.1828 0.0026 0.3035 1.1854 1.8447 1.9501
0.28 �0.1819 0.0024 0.3103 1.1851 1.8346 1.9313
0.30 �0.1810 0.0022 0.3169 1.1847 1.8246 1.9125
0.35 �0.1784 0.0016 0.3368 1.1836 1.7948 1.8569
0.37 �0.1776 0.0014 0.3433 1.1833 1.7850 1.8386
0.38 �0.1768 0.0011 0.3498 1.1829 1.7752 1.8204
0.40 �0.1759 0.0009 0.3563 1.1825 1.7656 1.8024
0.42 �0.1751 0.0007 0.3627 1.1821 1.7560 1.7845
0.44 �0.1743 0.0005 0.3690 1.1818 1.7464 1.7667
0.45 �0.1735 0.0003 0.3753 1.1814 1.7370 1.7490
0.47 �0.1727 0.0001 0.3816 1.1810 1.7276 1.7315

5 Conclusion

In this paper we investigate the behavior of the predator prey system as a discrete time scale
where functional response dependents on predator density in different way. It is seen that
if 0 $ a1 $ 1 � r2

�hζ�1�a2r1�
and 0 $ r2 $ �hζ�1 � a1�, then the system (2.1) will have feasible

coexistence equilibrium point. In section 2.2, analytically we have obtained several condition
for stability of the equilibrium points. Also we have studied the conditions for which an
equilibrium point will be called as source, sink and saddle. In section 3, sufficient conditions
for flip bifurcation as well as hopf-bifurcation has been studied respectively. These results
reveal far richer dynamics of the discrete model compared to the continuous model. This
complex phenomena may be essential for the intraspecific competitive between the predator
and the prey.
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Figure 1  Graphical representation of u1, u2 in Example 4.1. 
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