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ABSTRACT 

Earthquake prediction remains a formidable challenge due to its theoretical and practical complexities. The 

multifactorial nature of earthquakes leads to diverse anomalies, which are potential precursors. However, the intricate 

earthquake process and limited knowledge of the Earth's crust structure restrict the accuracy of these predictions. This 

study introduces an advancements using machine learning and deep learning methods, notably the Kora 3 and Kora 4 

algorithms, to identify key earthquake features. We employed LSTM and RNN deep learning algorithms to predict 

earthquakes of magnitude M≤4.3 without temporal data. Our methodology was applied to the 2022 earthquake monitoring 

in the Fergana depression, demonstrating significant advancements in seismic event prediction. 
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1. Introduction 

The Fergana depression, located in Central Asia's northeastern sector, is an intermountain basin encircled 

by significant mountain ranges: the Kuramin and Chatkal Ranges to the north and northwest, the Fergana 

Range to the east and northeast, and the Alay and Turkestan Ranges to the south. This valley connects to the 

Turan lowland through a narrow western passage. The topography of the Fergana depression is marked by 

contrasting elevations: the surrounding mountains soar to heights of up to 5,000 meters in the south, around 

4,000 meters in the east, and between 2,000 to 3,000 meters in the north and northwest. At its foothills, the 

landscape is characterized by lower mountain ranges, adyrs, and intermountain valleys. The central area 

features a pluvial-alluvial plain, irrigated by the region's largest river, the Sirdarya, and its principal tributaries, 

the Narin and Qaradarya (refer to Figure 1). 
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Figure 1. Ferghana depression (Uzbekistan) and adjacent countries. 

The Fergana depression in Uzbekistan is known for its seismic activity, frequently experiencing moderate 

earthquakes. Historical records indicate that this region has witnessed eight significant seismic events, each 

with a magnitude of M≥6.5, as detailed in Table 1. 

Table 1. Eight significant seismic events occurred in the Fergana area of Uzbekistan. 

Year Month Day H M S Lat Lon Depth Mag 

1896 0 0 0 0 0 41,5 70,9 20 6,9 

1902 0 0 0 0 0 40,8 72,3 20 6,6 

1923 0 0 0 0 0 39,59 69,19 20 6,6 

1924 0 0 0 0 0 40,5 73,1 20 6,6 

1924 0 0 0 0 0 40,59 73,19 20 6,7 

1937 0 0 0 0 0 42,1 70,9 20 6,7 

1946 0 0 0 0 0 41,9 72 20 7,9 

1977 1 31 14 26 14 40,11 70,79 20 6,6 

Current research in seismic studies extensively employs various artificial intelligence algorithms to 

predict earthquake magnitudes from seismic time series. These methodologies, utilizing diverse earthquake 

features, have been successful globally[1-14]. These predictive models generally forecast magnitudes without 

being region-specific. An exception is found in a study[15] that divides the area under consideration into eight 

zones, attempting to associate earthquake magnitudes with specific zones. However, such research is scarce 

for Central Asia. The notable exception is the pioneering work by the Institute of Physics of the Earth, which 

employed a basic pattern recognition algorithm for this region[16]. This approach was later refined by scientists 

from the Institute of Earth Physics of the Russian Academy of Sciences and the Institute of Earthquake Forecast 

Theory and Mathematical Geophysics of the Russian Academy of Sciences. They enhanced algorithms for 

pinpointing locations of significant earthquakes and successfully implemented these in various global regions. 

A comprehensive review of this research and its applications can be found in[17-19]. 

The primary indicators of earthquake susceptibility are morphometric features, particularly at points 

where faults intersect. In a study focusing on the Fergana depression[16], only four epicenters of significant 

earthquakes (magnitude M≥6.5) were identified. Subsequent analysis suggested the possibility of a major 
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earthquake occurring at one specific node in the depression. Yet, to date, no earthquakes with a magnitude of 

M≥6.5 have been recorded at this node. This leads us to believe that relying solely on morphometric features 

may be insufficient for accurate earthquake prediction. These features primarily represent the Earth's crust 

deformation, but as observed in viscoelastic materials, significant deformations do not necessarily indicate an 

imminent fault. 

The seismic process, as noted by Gzovsky[20], is primarily governed by the maximum shear stress and the 

highest gradients of movement velocities. He observed that all-around compression tends to inhibit earthquake 

occurrences. Consequently, morphological features serve as indicators of the Earth's crust's involvement in the 

deformation process. A key predictor of an impending earthquake is the assessment of energy accumulation or 

the proximity of tangential stress to the crust's ultimate local strength. However, Gzovsky identified 

inconsistencies in using geomorphological features from the Quaternary period for predicting strong 

earthquakes through pattern recognition. These features, based on average movement velocity gradients over 

extended periods, fail to capture the dynamics of these movements. He argued that since the current seismic 

stress state and the one during the formation of crustal faults can vary significantly, fault activity should be 

considered a crucial criterion. Information about tectonic activity can be garnered through seismotectonics, 

geodesy, and seismic methods. Riznichenko[21] emphasized assessing earthquake potential by analyzing 

seismotectonic flow of rock masses, quantifiable through mathematical modeling. Crustal deformations offer 

valuable insights into the evolution of seismic processes and potential future earthquakes. In this paper, we 

enhance prediction accuracy by utilizing not only seismological time series and morphostructural features but 

also other critical characteristics like stress state and recent movements, as determined through numerical 

modeling[22]. In our study, Earth's crust deformations and stresses in the Fergana depression, specifically at 

depths of 15-20 km, were modeled using Stokes equations, considering the primary active faults. The internal 

stresses for Central Asia from[23] were applied as boundary conditions. Seismological data indicate that eight 

significant earthquakes (M≥6.5) occurred at approximately 20 km depth (Table 1). For effective earthquake 

monitoring, it's crucial to consider variations in the stress state over preceding time intervals. Changes in the 

stress state following earthquakes are determined through modeling the earthquake mechanism as a double 

dipole without a moment[24-25]. 

2. Methodology 

The identification of strong earthquake locations in this study is achieved through the application several 

methodologies, specifically Cora and Random Forest, and machine learning and deep learning architectures 

such as ANN (Artificial Neural Network) and LSTM (Long Short-Term Memory). The core principle of pattern 

recognition employed here involves spatial division via a hyperplane. This hyperplane is defined by a vector 

comprising a set of event attributes, effectively classifying the data into two distinct groups. Various algorithms 

differ in their approach to determining the optimal hyperplane, each guided by unique criteria. The majority of 

machine learning techniques in earthquake prediction are adaptations of these algorithms, tailored to address 

this specific challenge. 

The foundational principle of the Cora 3 algorithm involves compiling a dataset with predictive features 

that characterize earthquakes. To construct these datasets, the region of interest, specifically the Fergana 

Depression, was segmented into 17 distinct zones (see Figure 2). This segmentation strategy was grounded in 

the amalgamation of individual zones from the computational grid used in the numerical modeling of the 

Earth's crust's stressed state in the Fergana Depression[23]. This approach also aimed to avoid excessively 

narrow zoning, which could limit the representativeness of earthquakes for determining critical seismic 

parameters such as Richter-Gutenberg coefficients, earthquake counts, and other related seismic metrics. 
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Figure 2. Ferghana depression divided into zones. 

In each of the 17 zones, the following specific features were determined (Table 2): 

1) Distance to the nearest mountainous country R≤ 30 km;  

2) 30<R≤ 70; 

3) R>70;  

4) Morphological combinations: mountains with foothills and foothills;  

5) mountains with foothill plains;  

6) mountains with other mountains;  

7) foothills with foothill plains;  

8) relief height h≤1 km;  

9) 1<h≤ 2 km;  

10) h>2 km;  

11) height difference dh≤ 1.5 km;  

12) 1.5<dh≤ 2.5;  

13) dh>2.5 km;  

14) number of faults 1≤n≤2;  

15) n>2;  

16) crossing faults;  

17) length of the main fault L≤300 km;  

18) 300<L≤700 km;  

19) L>700 km;  

20). Relative tangential stress versus instantaneous shear strength τ>0.9;  

21) Modern movements: upward vertical velocities;  
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22) Modern movements: down vertical velocities;  

23) Nature of the stress state: regional compression;  

24) Regional stretching;  

25) Nature of the earthquake: fault;  

26) Reverse;  

27) Shift;  

28) The difference between the Richter-Guttenberg coefficient and the average value of the entire territory 

of the Fergana depression Δb≥0;  

29) The difference in the relative activity of earthquakes from the average value of the entire territory 

ΔA10 ≥0;  

30) The presence of earthquakes with magnitude M≥6.5. 

Table 2 is structured with the feature numbers displayed horizontally and the zone numbers vertically. A 

value of 1 is assigned if the specific feature is present in a zone, and 0 if it is absent.  

Table 2. Earthquake features(horizontally) and zones (in vertical). 

 1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 

2 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 

3 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 

4 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 

5 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 

6 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 

7 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 1 

8 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 

9 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 

10 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 1 

11 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 1 

12 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 

13 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 

14 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 

15 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 

16 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 

17 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 

Features 1-13 were identified using an online topographic map. Presently, there exists no contemporary, 

universally accepted fault map of the Fergana intermountain basin; these maps often vary based on the tectonic 

interpretations of different researchers and are not directly discernible through geophysical methods. The 

location and number of faults (Features 14-19) were determined based on the findings from our previous 

studies[22], as illustrated in Figure 3. 
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Figure 3. Active faults of the Ferghana depression. 

Modern movements (Features 21-22), stresses and geodynamic states (Features 23-27) were determined 

from the modeling results[22] (Figures 4-6). 

 

Figure 4. Vertical velocities of the Earth’s crust in the Fergana depression. 

 

Figure 5. Tangential stresses of the Earth’s crust in the Ferghana depression. 
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Figure 6. The highest horizontal stress (compression) σ1 (in 1:102 MPa) for depths of 15-20 km.  

Horizontal is eastern longitude, vertical is northern latitude. The orientation of the arrows indicates the direction of σ1. Anderson's 

classification of the geodynamic state in the event of an earthquake indicates the possibility of a reverse fault (red), a normal fault 

(blue), and displacement (green). 

To address the challenge of earthquake prediction, in accordance with the Cora 3 algorithm, a training 

table is generated with each row representing a description of seismic zones, denoted as A= aij (i=1..n, j=1..m)}. 

All zones are divided into two classes, characterized by the presence or absence of predicted seismic 

manifestations - earthquakes of magnitude M≥M0. For each class, characteristic sets of features are found. As 

such sets of features, the algorithm considers all possible sets of 3 features from among the given n features. 

The characteristic set of a class consists of all sets of feature values that occur only in a given class and do not 

occur in another class. 

Thus, certain sets of sets of feature values {ar, au, av} are called characteristics of class K1. The 

characteristics {ar, au, av} of class K2 are determined similarly. At the stage of recognition of a given object S= 

(a1, a2, …, an), its sets of feature values are compared with the characteristics of the corresponding triplets for 

classes K1 and K2. Let us denote G(S, Кi) – a measure of the proximity of an object S to class Ki - the number 

of sets of feature values S that coincide with the characteristics of class Ki. , i=1,2. If G(S, К1)>G(S, К2)+Δ, 

where Δ ˃0, then object S is assigned to class K1; otherwise, it is assigned to class K2. The quality of the 

recognition algorithm is determined by the proportion of correctly recognized objects. 

The Core 3 algorithm was created early in the computer revolution and was designed for low-power 

machines. Taking into account the realities of today, we decided to slightly complicate the solution of the 

problem so that the characteristic classes K1 and K2 contain not three but four attributes {ar, au, av, aw}. With 

the same signs (table), the Cora 4 algorithm was unable to determine the presence of an earthquake in zone 6 

(table). However, it anticipates a major earthquake in Zone 12, similar to Cora 3, in the future. Naturally, the 

requirements for characterizing earthquakes become more stringent. Dividing the territory under consideration 

into smaller zones would make it possible to more accurately determine some characteristics, especially 

morphometric ones. However, this approach leads to a reduced number of earthquakes being associated with 
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specific zones, raising concerns about the representativeness of these earthquakes for identifying additional 

characteristics. 

In contrast to other machine learning algorithms, LSTM (long short-term memory) features a mechanism 

for storing information in memory that, at its most basic level, relies on the previous state ht-1. It takes the 

current input xt and performs calculations to determine which of them to store in memory as the hidden state 

ht. 

The architecture (Figure 7) and the system of equations that implements this architecture have a similar 

form of[13]: 

it = σ (Wixxt +Wih ht-1 +Wicct-1 + bi) 

ft = σ (Wfxxt +Wfhht-1 +Wfcct-1 + bf) 

ct = ft ○ ct-1 + it ○ (Wcxxt +Wchht-1 + bc)   (1) 

ot = σ (Woxxt +Wohht-1 +Wocct + bo) 

ht = ot ○ ϕ(ct) 

Here, i, f, o, c, and h denote the input gate, forget gate, output gate, cell state, and hidden vector, 

respectively. σ is a sigmoid function that takes values [-1; 1]. Wic, Wfc and Woc are the peephole connection 

matrices, which connect the cell state to the input gate, forget gate, and output gate, respectively. Similarly, 

Wix;Wfx;Wox and Wcx are the weight matrices connecting the input vector xt and the input gate, forget gate, 

output gate and cell state, respectively. The icon ○ is a Hadamard product that is a binary operation on two 

matrices of the same dimension, the result of which is a matrix of the same dimension, in which each element 

with indices i and j is the product of elements with indices i and j of the original matrices. 

 

Figure 7. Architecture LSMT built to solve the problem. 

During the pruning process of the neural network, less significant or redundant weights are strategically 

removed. This reduction aims to simplify the model's architecture and decrease its size, while still preserving 

its operational efficacy. The loss function plays a crucial role in quantifying the divergence between predicted 
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outputs and actual values. It serves as a critical tool during the neural network's training phase, allowing for 

the evaluation of the model's performance and guiding adjustments in its structure or parameters. Typically 

established in the cross-validation phase, the data set is partitioned into training (80%) and testing (20%) 

subsets, facilitating the optimization of the loss function. 

3. Analysis of model solutions 

Table 3 shows the testing results. Earthquakes 0 and 1 indicate the values in column 30 of Table 1. 

Prediction 0 or 1 means recognition match. The numerator and denominator of the assessment indicate the 

share of G(S, K1)/G(S, K2) in classes K1 and K2. Correct or incorrect seismicity prediction is marked with TRUE 

or FALSE. In this scenario, 16 out of 17 events were accurately identified, resulting in a recognition accuracy 

of 94.1%. Meanwhile, the algorithm indicates that in zone 12, the likelihood of a strong earthquake (M≥6.5) 

is comparatively high, with a ratio of 169.7 against 66.78. 

Table 3. Testing by Cora 3 algorithm. 

Zones Class К1  

1 Earthquake 0 forecast 0 value: 98.00/45.14 (TRUE) 

3 Earthquake 0 forecast 0 value: 69.44/68.71 (TRUE) 

4 Earthquake 0 forecast 0 value: 82.00/53.43 (TRUE) 

8 Earthquake 0 forecast 0 value: 60.11/53.43 (TRUE) 

12 Earthquake 0 forecast 1 value: 66.78/169.7 (FALSE) 

13 Earthquake 0 forecast 0 value: 132.56/8.14 (TRUE) 

14 Earthquake 0 forecast 0 value: 126.56/45.29 (TRUE) 

15 Earthquake 0 forecast 0 value: 119.44/3.00 (TRUE) 

16 Earthquake 0 forecast 0 value: 110.89/1.14 (TRUE) 

17 Earthquake 0 forecast 0 value: 102.56/33.86 (TRUE) 

 Class К2 

2 Earthquake 1 forecast 1 value: 73.70/133.67 (TRUE) 

5 Earthquake 1 forecast 1 value: 50.80/94.83 (TRUE) 

6 Earthquake 1 forecast 1 value: 37.20/65.17 (TRUE) 

7 Earthquake 1 forecast 1 value: 71.90/117.33 (TRUE) 

9 Earthquake 1 forecast 1 value: 55.00/118.00 (TRUE) 

10 Earthquake 1 forecast 1 value: 32.10/125.17 (TRUE) 

11 Earthquake 1 forecast 1 value: 39.80/133.50 (TRUE) 

Using the same features outlined in Table 2, the Cora 4 algorithm was not able to identify an earthquake 

occurrence in zone 6, as shown in Table 4. Nevertheless, it predicts a significant earthquake in Zone 12 in the 

future, aligning with the Cora 3 algorithm's findings. However, the true positive rate of recognition quality 

diminishes to 88.2%. This necessitates more stringent criteria for earthquake characterization. Subdividing the 

area into smaller zones could enhance the accuracy in identifying certain features, particularly morphometric 

ones. Yet, this leads to a decrease in the number of earthquakes associated with specific zones, raising concerns 

about the representativeness of these earthquakes for identifying other characteristics. 
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Table 4. Testing by Cora 4 algorithm. 

Zones Class К1  

1 Earthquake 0 forecast 0 value: 734.78/122.00 (TRUE) 

3 Earthquake 0 forecast 0 value: 584.89/347.86  (TRUE) 

4 Earthquake 0 forecast 0 value: 738.22/229.43(TRUE) 

8 Earthquake 0 forecast 0 value: 567.33/343.43 (TRUE) 

12 Earthquake 0 forecast 1 value: 406.22/884.71 (FALSE) 

13 Earthquake 0 forecast 0 value: 1217.00/6.29(TRUE) 

14 Earthquake 0 forecast 0 value: 1039.11/189.00 (TRUE) 

15 Earthquake 0 forecast 0 value: 1164.22/7.29(TRUE) 

16 Earthquake 0 forecast 0 value: 1071.44/2.43 (TRUE) 

17 Earthquake 0 forecast 0 value: 860.67/124.14 (TRUE) 

 Class К2 

2 Earthquake 1 forecast 1 value: 433.10/541.17 (TRUE) 

5 Earthquake 1 forecast 1 value: 388.10/474.83 (TRUE) 

6 Earthquake 1 forecast 1 value: 432.70/322.33 (TRUE) 

7 Earthquake 1 forecast 1 value: 376.50/496.17 (TRUE) 

9 Earthquake 1 forecast 1 value: 451.50/545.33 (TRUE) 

10 Earthquake 1 forecast 1 value: 319.30/671.17 (TRUE) 

11 Earthquake 1 forecast 1 value: 303.10/701.67 (TRUE) 

The Random Forest algorithm, a versatile machine learning tool, is employed for classification, regression, 

and clustering tasks[27]. Its core strategy involves the integration of a substantial ensemble of decision trees. 

Individually, these trees may yield low classification accuracy, but collectively, they produce robust results. 

Decision-making is based on the majority vote among these trees, each constructed independently. The strength 

of this ensemble approach lies in the diversity and effectiveness of its base algorithms, with each tree developed 

on a unique training sample and incorporating randomness in split decisions. In our study, the algorithm was 

trained on all zones except one, which was then used for the recognition process. This application achieved a 

100% accuracy rate, correctly identifying zones with earthquakes of magnitude M≥6.5, as well as those without, 

as indicated in Table 5. The weights generated from this algorithm implementation are depicted in Figure 8. 

Table 5. Results by Random forest algorithm. 

 

Zones 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Real 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 

Test 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 

It is evident that the various indicators used in earthquake prediction are not of equal significance. 

Understanding the importance of each feature can shed light on the mechanisms underlying seismic activities 

and aid in developing a more accurate seismic model. As expected, the proximity of maximum shear stress to 

the crust's instantaneous strength limit is a leading indicator[20]. This is followed by the presence of active fault 

intersections[16] and current movements, particularly vertical velocities [21]. Other significant factors include 

the length of the main fault[18], as well as morphometric features such as small elevation changes[11], among 

others. In terms of fault types, reverse faults [26] and strike-slip faults[27] are more prevalent than normal faults[25]. 
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The region exhibits more expansion[24] than compression[23], a characteristic typical of rift zones. Interestingly, 

the Richter-Guttenberg coefficient[28] and earthquake activity[29] carry lesser weights in the model. This could 

be attributed to the reduced representativeness of earthquakes in more narrowly defined zones. 

 

Figure 8. The feature weights are shown in Table 2 as a result of the implementation of the random forest algorithm. 

The study's results demonstrate that machine learning algorithms can effectively identify key features for 

monitoring significant earthquakes and pinpoint potential locations of such events, although they do not specify 

the timing of their occurrence. 

The same set of features was employed in predicting earthquakes using deep learning techniques. Two 

distinct architectures were developed: one based on an Artificial Neural Network (ANN) and the other on a 

recurrent Long Short-Term Memory (LSTM) framework comprising 128 modules. The input for these models 

includes seismological data specific to each zone, such as earthquake dates, geographic coordinates, source 

depth, earthquake magnitude, and an additional 40 attributes listed in the table. The network training utilized 

seismological data spanning several years. Model accuracy at each layer was assessed using the root mean 

square error (RMSE) method, and optimization of weights was performed using the Adam optimization 

algorithm. In the ANN-based model, the output layer predicts a single parameter—the magnitude of the next 

earthquake. Conversely, the LSTM-based model outputs two parameters: the magnitude and zone of the next 

earthquake. The RMSE for the ANN model is 0.12 and 0.14 for the LSTM model, as detailed in Table 6. 

Our methodology aims to forecast the magnitude of an imminent earthquake based on the given input 

data, though it does not predict the timing of the event. This prediction model has undergone rigorous testing 

with selective historical and instrumental data to ensure its accuracy in forecasting both the magnitude and the 

location of the next earthquake, albeit without date and time specifics. For example, inputting data from the 

most recent recorded earthquake enables the model to predict the magnitude and site of a future earthquake. 

While predicting earthquakes without temporal information may appear to have limited immediate application, 

it marks a notable scientific advancement. These findings lay a solid foundation for future research endeavors 

focused on incorporating temporal elements into earthquake prediction models. 
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Table 6. Testing earthquakes for individual dates by LSTM and ANN algorithms. 

Date Latitude Longitude Depth Target LSTM ANN 

1995 39.4 71.0 5.0 5.1: 14 4.45:14 5.2:- 

2006 39.53 73.65 5.0 5.0:17 4.6:17 5.0:- 

2008 39.5 73.7 30.0 4.5:17 4.6:17 4.8:- 

2011 39.55 73.1 30.0 4.8:16 4.6:16 4.6;- 

2014 39.38 71.75 13.0 4.7:15 4.5:15 4.6:- 

The architecture's training involved using a database comprising data up to the year 1994, inclusive of the 

corresponding 29 features, to predict seismic activity for 1995. This methodology was similarly applied to 

verify predictions for the years 2006, 2008, 2011, and 2014. The actual database data and zone numbers are 

presented in the last column. Training on these architectures resulted in a root mean square error (RMSE) of 

0.12 for the ANN model and 0.14 for the LSTM model. While forecasting future earthquakes without temporal 

information may seem of limited practical use, it represents a significant scientific achievement. This result 

lays the groundwork for future research aimed at incorporating time-specific predictions. 

As a complete seismological database for 2023 was not available, the study focused on monitoring the 

year 2022. For this, the LSTM model was trained separately for each zone, incorporating its unique 

characteristics and all recorded earthquakes within that zone of Ferghana Depression. This approach enabled 

the prediction of potential earthquakes for 2022, the details of which are documented in Table 7. 

Table 7. Testing by LSTM algorithm earthquakes for 2022 year implementing a seismological database of Ferghana Depression  

Forecast for 2022 

Zones Magnitude:Predicted/Real 

3 3.8/4.2 

4 4.3/4.6 

8 4.0/4.4 

8 3.8/5.2 

9 3.7/4.0 

9 3.9/4.0 

10 4.2/4.0 

16 4.1/4.1 

16 4.2/4.2 

A review of the data tables reveals that deep learning successfully predicted the majority of earthquakes 

that occurred in 2022. The limitation of these deep learning algorithms in forecasting strong earthquakes with 

magnitudes greater than M>4.3, as shown in Table 7, can be attributed to the scarcity of high-magnitude events 

in the training dataset. A potential solution is to enrich the seismological database with more significant 

earthquakes from a broader region, encompassing the area under study, and subsequently retrain the models 

for more localized predictions. Implementing a seismological database that includes Central Asia and the 

Fergana depression enabled the prediction of earthquakes with magnitudes up to M=5.3, as indicated in Table 

8.  
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Table 8. Predicted and real magnitudes and zones by LSTM algorithm for 2022 year implementing a seismological database of 

Central Asia 

Year Month Day Lat Lon Depth Real Mag 
Predict 

Mag 

Real 

Zone 

Predict 

Zone 

2022 1 23 39,8 73,08 29 4,1 4,9  10 

2022 3 14 40,3 70,18 27 4,6 5,2 4 8 

2022 3 21 41,8 70,87 18 4,5 5,3 8 10 

2022 3 31 41,5 73,06 10 5,2 4,1 3 7 

2022 6 11 40,8 69,64 20 4,2 5,2 8 9 

2022 6 23 41,4 72,78 11 4,7 4,1 16 9 

2022 6 26 39,4 72,75 13 4,2 4,3 7 11 

2022 7 27 41,8 71,74 5 4,4 4,9 3 9 

2022 9 8 39,8 69,75 8 5,0 4,4 16 6 

2022 11 1 39,9 72,94 10 4,4 4 16 10 

2022 11 21 39,6 73,12 8 4,4 4,4 10  

Table 8 should be interpreted as follows: The machine was trained using data up to and including 2021, 

enabling verification of its predictions against the 2022 database. After the initial January 2022 event, a 

prediction request was submitted. The machine forecasted an earthquake with a magnitude of M=4.9 in zone 

No. 10. In reality, an earthquake occurred in March in adjacent zone No. 4, with a magnitude of M=4.6. These 

magnitudes and zones are highlighted in red in the table. Following this event, the machine predicted an 

earthquake in zone No. 8 with a magnitude of M=5.2, and so on. Overall, the machine accurately predicted 7 

out of 11 events with a magnitude accuracy of M=0.3, except for one event noted as a second-order occurrence 

in Table 8. The slight discrepancy in exact zone prediction, despite the proximity of the zones, can be attributed 

to the initial division into 17 zones not being sufficiently precise. This highlights the need for selecting features 

based on morphologically homogeneous zones.  

Nevertheless, our experience demonstrates that employing the methodologies described herein enables 

effective monitoring of strong earthquakes, particularly when the database is systematically updated with 

records of new seismic events, including weaker earthquakes. The logical progression for future work involves 

broadening the geographic scope of earthquake forecasting. 

4. Conclusions 

1. Earthquake Prediction in the Fergana Depression: Utilizing Cora-3, Cora-4, and Random Forest 

machine learning algorithms, we successfully identified potential locations for strong earthquakes in the 

Fergana depression. 

2. Identification of Geodynamic Features: The study pinpointed the most relevant geodynamic 

features associated with strong earthquakes in the region. 

3. Forecasting Major Earthquakes: We determined the possibility of future earthquakes with 

magnitudes M≥6.5 in specific zones of the Fergana depression. 

4. Prediction of Smaller Magnitude Earthquakes: Earthquakes with magnitudes M≤4.3 in the 

Fergana depression were effectively predicted using LSTM and ANN machine learning algorithms. 

5. Comprehensive Earthquake Monitoring: The research included detailed monitoring of earthquake 

activities throughout 2022 in the Fergana depression. 
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