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Abstract: Limit is a very important basic knowledge in calculus, the defi nition of limit is a simple logical proposition, which involves 
the existence, arbitrariness, and inequality problems. In this paper, one gives some explanations of the limit, the relationship between the 
limit and the infi nitesimal are demonstrated, from the infi nitesimal order to understand the limit.
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1. Introduction
The limit is an extremely important concept in calculus by which the continuity and derivative of a function can be defined. 

Infi nitesimal and infi nitesimal orders help you understand the limits of functions and how to compare “orders of magnitude” between limits.
Scientific numeration is very convenient when people need to deal with very large numbers. The idea of counting is to count and 

compare the size of the book by defi ning the bits of the number, without writing down many zeros or counting how many zeros there are. If 
you add or multiply the two numbers, it’s not very diffi  cult.

Logarithms is invented and used in a similar way to solve the problem of exponents. The estimation of infi nitely small quantities, 
infi nitely large quantities, and orders is the scientifi c notation of calculus. The words infi nite approach and approximation seem very loose, 
but they are a kind of visualization of the strict expression, and the original strict expression is not a problem.

1.	let’s	look	at	the	defi	nition	of	the	limit: lim ( )f x A
x a

=
→

. 

The defi nition of the limit is: for any 0ε >  there exists a 0δ >  such that when x a δ− <  is true ,the inequality ( )f x A ε− <  is true 
at that time. 

The defi nition of the limit is a naive logical statement, the judgment of the inequality. For any 0ε > ,there exists  one 0δ >  such that 
the inequality  ( )f x A ε− < , 0ε > is true when the inequality of about 0δ > , x a δ− < is true. 

If such a condition is satisfi ed, then the function has a limit. No matter how complicated the problem is, what one really cares about is 
whether the inequality holds or not. As you can imagine, this is a simple algorithmic function, and if you pass any positive value 0ε >  to it, 
it always returns 0δ > . 

If one look at the limit from the point of view of an infi nitesimal and with transformation ( ) ( )g x f x A= − , one can get an equivalent 
defi nition of the limit that is  for any 0ε > , exists 0δ >  such that x a δ− < , at that time, the inequality ( )g x ε<  holds. Currently, one 

call ( )g x  infi nitesimal. 
Because of this, all studies of limits become equivalent studies of infi nitesimals, so limit theory can also be called infi nitesimal analysis. 

Infi nitesimal itself is a variable, a function, not a constant, even if the only constant infi nitesimal one will treat it as a constant function. 
Therefore, one should use dynamic thinking to look at and understand infi nitesimal, rather than treating it as a small number.

2.	Infi	nitesimal,	infi	nitesimal	order
2.1 Equivalent infi nitesimals
Consider an important limit 0

sinlim 1x
x

x→ =  that plays an important role in calculus, and at this point one can express the limit 

as sin x x , this is equivalent to sin 1x
x

→ . Here one can say that at that time, the function sin x  and x are very close when 0x → , and the 

proximity is equivalent, that is, the quotient between the two functions is close to 1. This argument may involve some computational skills, 
but the logic problem is still expressed in a very simple way. 

Strictly speaking, if for any two functions ( ), ( )f x g x , if there is ( )lim 1
( )x a

f x
g x→

= , it can be written as ( ) ( )f x g x  where a−∞ < < +∞ . 

If ( ) 0f x → or ( )f x →∞  , it is computing an infi nitely small quantity or an infi nitely large quantity, then it’s called ( )f x  is an equivalent 
infi nitesimal (large) quantity of ( )g x . Usually only infi nitesimal is considered, for infi nity, it can be understood as the reciprocal of non-zero 
infi nitesimal. For relation ~, the following three properties are satisfi ed:

1. Refl exivity: f f

2. Symmetry: f g g f⇔ 

3. Transitivity: if ,f g g h f h⇒  

If these three properties are satisfied, it is called an equivalence relation. For example, the equality relation of real numbers is an 
equivalence relation. If one only consider the equivalence relation, the ratio 1 is too strict, so one do some generalization of the equivalence 
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relation, giving the concept of the same order infi nitesimal: if ( )lim
( )x a

f x A
g x→

= , then ( )f x  and ( )g x  are said to be the same order infi nitesimal. 

In fact, dividing A  both sides in the above defi nition can be converted to the defi nition of an equivalent infi nitesimal, i.e. ( ) ( )f x Ag x

2.2 Application of infi nitesimals
Why is the concept of infinitesimal introduced? While the actual function computation may be tedious (involving trigonometric 

functions, inverse trigonometric functions, etc.), there is one kind of function computation that has always been very trivial: polynomials 
functions. This kind of function can even calculate the value directly. If one can reduce a complex function to a power function, things 
are much simpler, and the error introduced by equivalent infi nitesimals is acceptable. Or let’s try to express the “order of magnitude” of a 
function as a poorer function, and this “quantity” refers to the approximation speed at some point. It doesn’t have to be a power function, of 
course, but it can be done the other way around, to a diff erent but better calculated limit. A classic example is explained below.

Example 1: Finding the limit
3

0

ln(1 )lim
x

x
x→

+

Solution: According to the principle of equivalent infi nitesimals, one have. 3 3ln(1 )x x+  .Thus have
3 3

0 0

ln(1 )lim lim 0
x x

x x
x x→ →

+
= = .

In this problem one rely on a very simple conclusion: two functions, that is, they are of the same order of magnitude, and then one 
assign the old limit to the new ratio. 3 3ln(1 )x x+  at 0x = .Since one are trying to “reduce” the limit of a continuous function to a power 
function, one can defi ne the order of the limit in terms of the order of the power function. That is, if a constant α  is known and exists  
lim ( ) 0x a f x→ =  such that ( )lim 0x a

f x A
xα→ = ≠ , i.e., ( ) ( )f x A x a α− there is said ( )f x  to be an infi nitesimal of order at x a=  nearby. 

This α  is like an order of magnitude in scientifi c decimal notation, which doesn’t give us the exact information, but it gives us enough 
information in some circumstances, which is exactly what one want. Order is a great tool, but not all functions have orders. Some functions 
don’t have orders. For example, functions  1( ) sinf x x

x
= , 0x =  have no order in their vicinity. This is because the limit of theta does not 

exist. 
0

1sin
lim
x

x
x

xα→
The reader can discuss with the size of α and 1, verifying that the limit does not exist. 

Misestimating an infi nitesimal class can cause a lot of trouble, such as the two functions 2 3,x x are still very diff erent. If you estimate 
the wrong order when calculating the limit, you may get the wrong result. The equivalence relation does not tell us anything about addition 
and subtraction. For example, the equivalence relation only defi nes the relationship between two functions, multiplication or division, but it 
is missing for addition and subtraction. If you don’t pay attention to this, the limit 30

tan sinlim
x

x x
x→

−  will be miscalculated. If one use the 

equivalent infi nitesimal directly, one get 

3 30 0

tan sinlim lim 0
x x

x x x x
x x→ →

− −
= = that this result is wrong. The reason this is wrong is precisely because the principle of equivalent 

substitution is not followed in addition and subtraction. The result of the limit is 1/3, that is, the order of the numerator is 3, which cannot be 
obtained from the equivalent substitution.

2.3 Notation ,o O
For infi nitesimal addition and subtraction cannot correctly give the exact information of the order, in the comparison of diff erent orders 

of infi nitesimal problems, give the comparison defi nition of infi nitesimal order:
Defi nition 2.3 If satisfi ed ( )lim 0

( )x a

f x
g x→

= , take note ( ) ( ( ))( )f x o g x x a= → .

If ( ) 0f x → , then one say ( )f x  is higher order infi nitesimal smaller than ( )g x . 

For example, 1α > , one can write. ( )x o xα = . In the defi nition of higher order infi nitesimal, one use the function ( )g x  as a reference, 
then the convergence rate of the function ( )f x  is faster than ( )g x . The higher order infi nitesimal is transitive, which brings us convenience 
in judging the size of the infi nitesimal order.

If there is ( ) (1),( )f x o x a= → ,then there is ( ) 0f x → . Of course, it’s awkward to use the notation o  here, but there’s really no problem 
with using 1 as the denominator! At this time, one look at the convergence rate compared with the constant function, then the function 
convergence is convergence, not convergence is not convergence. Let’s look at the meaning of another symbol O .

Defi nition 2.4  ( ) ( ( ))( )f x O g x x a= →  is defi ned that there exists some a  de-centered neighborhood and a non-negative constant M
such that ( )

( )
f x M
g x

≤  is established over this neighborhood. 

The “de-centered neighborhood” here is not a complicated concept. When you’re dealing with limits, ( ), ( )f x g x might not be a limit 
at a , so you’re talking about a interval, and you’re picking a  out, which is ( , ) ( , )a a a aδ δ− ∪ + . This is the roughest estimate, but it’s also 
very convenient. It may be a bit cumbersome to calculate the limit of the ratio but knowing that the ratio is bounded saves us a lot of trouble.

In Fourier series, one study a class of “moderately decreasing” functions, and one need the function ( )f x  to satisfy it. 
1( ) ( )

1 | |
f x O

x α=
+

where 1α > .

If you look at the previous function, which has no order, you can see 1sin ( )x O x
x
= .
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So, O can give a qualitative result of the order of a function in some cases, which is useful in the study of infi nitesimals with no order. 

,o O , ~ is a “reference” action symbol that abstracts the conclusions of the ratios and limits satisfi ed by the specifi ed function, and uses 
these conclusions to represent a function, thereby indirectly calculating the original limit. This is like simplifying the problem down to a few 
decimal places.

3 Taylor’s Theorem
Taylor’s formula can be understood as describing values near a point in terms of the value of a function at that point. For suffi  ciently 

smooth functions, the structure of the function near them can be constructed from the values of the derivatives of each order of the function 
at a certain point. Taylor’s formula is to use these derivative values as coeffi  cients to construct a polynomial to approximate the value of 
the function in the neighborhood at this point. This polynomial is called the Taylor polynomial. Taylor’s theorem gives the remainder -- the 
diff erence between the polynomial and the actual function value.

Taylor’s theorem
Theorem 3.1 (Taylor’s Formula) If a function ( )f x  at a point 0x  has an n th−  order derivative, then

'
0 0

0 0 0 0
( ) ( )( ) ( ) ( ) ... ( ) (( ) )
1! !

n
n nf x f xf x f x x x x x o x x

n
= + − + + − + −

This theorem gives a property of order of the function ( )f x  the nearby 0x . In contrast to the equivalent infi nitesimals, ( )f x can be 
vieoned as an “approximation to the n  decimal place”. This makes it easier to deal with the limit problem, so you don’t have to worry about 
adding and subtracting infi nitesimals anymore, because you use theorem 3.1 to approximate the numerator by estimating the order of the 
denominator in advance. Let’s look at the following example.

Example:
3 3

3 30 0

1 1( )tan sin 13 3!lim lim
2x x

x x x xx x
x x→ →

+ − −−
= = . In this problem, one can see that the denominator is an infi nitesimal of order 

3, so according to the order of the denominator, if the order of the numerator is preserved to order 3, because the higher order infi nitesimal is 
a higher order infi nitesimal for the denominator and can be ignored in the limit calculation. This is an important meaning of theorem 3.1. To 
further investigate the properties of functions, Taylor’s theorem is given as follows in a more quantitative way.

Theorem 3.2 (Taylor’s theorem) If a function ( )f x  has continuous derivatives up to n  orders at a point 0x  , then there is 1n +  order 
derivative at internal ( , )a b , then there exist at  least ( , )a bξ ∈  such that 

' ( 1)
10 0

0 0 0 0
( ) ( ) ( )( ) ( ) ( ) ... ( ) ( )
1! ! ( 1)!

n n
n nf x f x ff x f x x x x x x x

n n
ξ+

+= + − + + − + −
+

.

As can be seen from the conditions of Taylor’s theorem, the conditions of Taylor’s theorem are much higher than that of Taylor’s 
formula, so the conclusion obtained is stronger. Using Taylor’s theorem, the function ( )f x  can be approximated quantitatively by 
polynomial function. In the theory of infi nite series, Taylor’s theorem can be studied more deeply, and a special class of Taylor series, also 
known as power series, can be obtained. Taylor series have no remaining terms.

4 Conclusions
This paper gives the relationship between limit functions and infi nitesimals and approximates the properties of functions near a certain 

point by introducing the concepts of equivalence and same order of infi nitesimals. The disadvantage of infi nitesimals is that they cannot 
be added or subtracted. Based on this, higher order approximations of functions are given Taylor’s formula and Taylor’s theorem. Taylor’s 
formula approximates a function of higher order, which can be used when it is not necessary to know the remainder of the function at that 
point. If a higher order remainder is needed to estimate and calculate, then Taylor’s theorem can be used.
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