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Abstract: In the present paper, we are interested in the following Schrödinger equation with singular potential v 
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where  = 3, 2∗: = 2
−2

, 2∗ : = 2 + 4
2−2−

, 4 <  < 2∗,  > 0 is a positive parameter,  is a singular potential

with parameter 0 <  < 1 and satisfies the following assumptions:

1 there exists  > 0 such that () ≥ 

for almost every  > 0;

2  ∈ 1(, ) for some (, ) with  >  > 0;

3 There exists  ∈ (,∞) such that () ≤ 

for almost every  > 0.

Obviously, the typical functions satisfying 1 − 3 is of the form 
||

, where , > 0 are real constants. In

this sense, taking  = 2 and the nonlinearity being the pure-critical case () = ||2∗−2 , the author [11]

showed that the behavior of solutions for (1.1) with  ≥ 3 heavily depends on the changes of the parameter .

Subsequently, the authors [4] investigated the case that (||) = 
||

with  ∈ ℝ, > 0 and () = ||−2

with  > 2 . Combining the moving planes and the moving spheres methods, they demonstrated that how the

existence of positive solutions of (1.1) can be influenced by the choice of the parameters , and . Since then,

problems like (1.1) have received continuous attention, see [1, 2, 3, 4, 6, 7, 8, 9, 10] and the references listed

therein. Actually, problems like (1.1) can model the stationary states of reaction diffusion equations in

population dynamics ([5]) and also arise in many branches of mathematical physics, such as nonlinear optics,

plasma physics, condensed matter physics and cosmology. The motivation of our present paper is the following

result obtained in [8], which is also given in 7.

Theorem A.([8, Theorem 1.1]) Assume that  ∈ 2−4+2
−2

, 2∗ and conditions 1 − 3 hold. Let
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Theorem A.([8, Theorem 1.1]) Assume that  ∈ 2−4+2
−2

, 2∗ and conditions 1 − 3 hold. Let

 = 3,  ∈ 1,2 ;
 ≥ 4,  ∈ 0,2 ,

and

∗: =
1
2−

1
2∗



2∗

2∗−2

1
2−

1
2∗ 

2∗
2∗−2

≥  > 0, (1.2)

where  and  are defined in (2.1) and (2.2). Then equation (1.1) has a ground state solution  ∈ rad
1,2 ℝ, .

Moreover,  ∈ ∞ ℝ and  ∈ 1 ℝ ∖ {0} .

The above Theorem A states that, when  = 3, is limited to the interval (1,2). Therefore, an interesting

issue is to relax this restrict and prove that (1.1) also admits ground state solutions if  = 3 and  ∈ (0,1] just

like the case  ≥ 4 . Motivated by this observation, we still focus our attention on problem (1.1) and

complement the above Theorem A in the following sense.

Theorem 1.1. Assume that conditions 1 − 3 hold. Let  = 3, ∈ (0,1),  ∈ 4, 2∗ and 0 <  < ∗ ,

(1.1) has a ground state solution  ∈ rad
1,2 ℝ, . Moreover,  ∈ ∞ ℝ and  ∈ 1 ℝ ∖ {0} .

Remark 1.2.When  = 3 and  ∈ (0,1), it is obvious to see that 2−4+2
−2

= 2 + 2 < 4. In other words, our

conclusion could not cover the range between 2+ 2 and 4 , that is, (2+ 2, 4]. Meanwhile, from Theorem A

and our Theorem 1.1, we see that the case  = 1 is also not involved.

To achieve Theorem A and our Theorem 1.1, the next embedding plays an essential role.

Proposition B. (8 , Proposition 2]) Suppose that  ≥ 3 and condition 1 − 3 hold. Then the following

continuous embeddings hold:

�
1,2 ℝ, ↪  ℝ ,  ∈ 2∗ , 2∗ , ∈ 0,2 ;

�
1,2 ℝ, ↪  ℝ ,  ∈ 2∗, 2∗ , ∈ 2,2 − 2 ;

rad
1,2 ℝ, ↪  ℝ ,  ∈ 2∗,∞ , ∈ 2− 2,∞ .

The embeddings are compact if  ≠ 2∗ and  ≠ 2∗.

Obviously, Proposition B signifies that 2∗ is the embedding bottom index and 2∗ is the embedding top

index when  belongs to (0,2). However, for  ∈ (0,2), it gives that

2∗ = 2 + 4
2−2−

< 2 + 4
2−2−2

= 2−4+2
−2

= : 2�∗ . (1.3)

Hence, we believe that it is worth exploring the validity of the conclusions in the above Theorem A or Theorem

1.1 for the case  ≥ 3, ∈ (0,2) and  ∈ 2∗ , 2�∗ in the future work.

2. Proof of Theorem 1.1
We firstly introduce the associated energy space for problem (1.1). For  ≥ 3 , denote by  ℝ ,  ∈

[1,∞) , the usual Lebesgue space with its norm ‖‖: = ∫ℝ ||�
1
 . Let 1,2 ℝ : =  ∈
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2∗ ℝ :∫ℝ |∇|2� < ∞ with the semi-norm ‖‖1,2 ℝ = ∫ℝ |∇|2�
1
2 . Define 1,2 ℝ, : = { ∈

1,2ℝ: ‖‖2 ℝ,
2 = ∫ℝ (|�|)||2� < ∞ normed by

‖‖1,2 ℝ,
2 : =

ℝ
 �  |∇|2� +

ℝ
 �  (|�|)||2�

1
2

and rad
1,2 ℝ, is the set of radial functions in 1,2 ℝ, . Note that the embeddings of 1,2 ℝ, ↪

2∗ ℝ and rad
1,2 ℝ, ↪ 2∗ ℝ are continuous, it allows us to define the best embedding constants 

and :

: = inf
∈1,2 ℝ

  ℝ
 �  |∇|2�

ℝ
 �  ||2∗�

2
2∗
= inf

∈1,2 ℝ
  ‖∇‖2

2

‖‖2∗
2 (2.1)

and

: = inf
∈�

1,2 ℝ,
  ℝ

 �  |∇|2�+
ℝ

 �  (|�|)||2�

ℝ
 �  ||2∗�

2
2∗

= inf
∈�

1,2 ℝ,
 
‖‖

�
1,2 ℝ,

2

‖‖2∗
2 (2.2)

Especially,  is achieved at

 = [( − 2)]
(−2)

4


2+|�|2

−2
2 : = 


2+|�|2

−2
2 for any given  > 0, (2.3)

which satisfies  1,2 ℝ
2 =  2∗

2∗ = 

2 .

Equation (1.1) is variational and its solutions are the critical points of the functional defined in

rad
1,2 ℝ, by

(): =
1
2 ℝ

 � |∇|2� +
1
2 ℝ

 � (|�|)||2� −


2∗ ℝ
 � ||2∗� −

1
 ℝ

 � ||� −
1
2∗ ℝ

 � ||2∗�.

According to [8, Lemma 5.1], we have known that the functional  possesses the mountain pass geometry

under the assumptions of Theorem 1.1. Moreover, define : = inf
∈Γ

sup
∈[0,1]

 (()) and �: = inf
∈

 (), it also gives

that  = � = �: = inf
∈rad

1,2 ℝ, ∖{0}
  sup
∈[0,1]

 () > 0 , where Γ: =  ∈

 [0,1],rad
1,2 ℝ, : (0) = 0, ((1)) < 0} and : =  ∈ rad

1,2 ℝ, ∖ {0}: '(),  = 0 . To obtain

the existence of ground states of problem (1.1), the essential step is to verify that the mountain pass level 

defined above belongs to some reasonable interval. For this purpose, we choose the following test functions 
different from [8] and make subtle analyses. For the convenience of discussion, in what follows,  is fixed,

that is,  = 3.

Lemma 2.1. Under the assumptions of Theorem 1.1, one has 0 <  < 1
3


3
2.

Proof. Consider the functions (�): = (|�|), ∈ ℕ+, where
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(): = 3


1+ 22

1
2
, 0 ≤  < 1;


1+ 2

1
2
(2 − ), 1 ≤  < 2;

0,  ≥ 2,
where 3 is determined in (2.3). By direct calculations, we have

 2
2 =

ℝ3  �    2� = 3 0

∞
 �  2   2

= 33
2 ∫0

1   2

1+22  +


1+2 ∫1
2  2(2 − )2

= 33
2 1

2 0


 �   

2

1+2  +
8

15


1+2 (2.4)

=  1


∇ 2

2
=

ℝ3  �   ∇
2
� = 3 0

+∞
 �  2 

' () 2

= 33
2

0

1
 �   54

1+22 3  +


1+2 1

2
 �  2

= 33
2 ∫0

  4

1+2 3  +
7
3


1+2 (2.5)

= 
3
2 +33

2 −


+∞
 �   4

1+2 3  +
7
3


1+2

= 
3
2 +  1



and

ℝ3  �    2∗� =  2∗
2∗ = 3 0

∞
 �  2 () 2∗

= 33
2∗ ∫0

1   32

1+22 3  +


1+2

3
∫1

2  2(2 − )2∗

= 33
2∗

0


 �   2

1+2 3  +


1+2

3

0

1
 �  2∗(2 − )2

= 
3
2 +  1

3 (2.6)

where 3 is the area of the unit sphere in ℝ3. Moreover, according to 3 , we infer that

ℝ3  �  (|�|)  2� ≤
ℝ3  �   

|�|
 2�

= 33
2∫0

+∞ 2− () 2

= 3
2

0

1
 �   

2−

1+22  +


1+2 1

2
 �  2−(2 − )2 (2.7)

Take into account that

33
2 

1+ 2
1

2
 � 2−(2 − )2 = 

1

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1
2

and rad
1,2 ℝ, is the set of radial functions in 1,2 ℝ, . Note that the embeddings of 1,2 ℝ, ↪

2∗ ℝ and rad
1,2 ℝ, ↪ 2∗ ℝ are continuous, it allows us to define the best embedding constants 

and :

: = inf
∈1,2 ℝ

  ℝ
 �  |∇|2�

ℝ
 �  ||2∗�

2
2∗
= inf

∈1,2 ℝ
  ‖∇‖2

2

‖‖2∗
2 (2.1)

and

: = inf
∈�

1,2 ℝ,
  ℝ

 �  |∇|2�+
ℝ

 �  (|�|)||2�

ℝ
 �  ||2∗�

2
2∗

= inf
∈�

1,2 ℝ,
 
‖‖

�
1,2 ℝ,

2

‖‖2∗
2 (2.2)

Especially,  is achieved at

 = [( − 2)]
(−2)

4


2+|�|2

−2
2 : = 


2+|�|2

−2
2 for any given  > 0, (2.3)

which satisfies  1,2 ℝ
2 =  2∗

2∗ = 

2 .

Equation (1.1) is variational and its solutions are the critical points of the functional defined in

rad
1,2 ℝ, by

(): =
1
2 ℝ

 � |∇|2� +
1
2 ℝ

 � (|�|)||2� −


2∗ ℝ
 � ||2∗� −

1
 ℝ

 � ||� −
1
2∗ ℝ

 � ||2∗�.

According to [8, Lemma 5.1], we have known that the functional  possesses the mountain pass geometry

under the assumptions of Theorem 1.1. Moreover, define : = inf
∈Γ

sup
∈[0,1]

 (()) and �: = inf
∈

 (), it also gives

that  = � = �: = inf
∈rad

1,2 ℝ, ∖{0}
  sup
∈[0,1]

 () > 0 , where Γ: =  ∈

 [0,1],rad
1,2 ℝ, : (0) = 0, ((1)) < 0} and : =  ∈ rad

1,2 ℝ, ∖ {0}: '(),  = 0 . To obtain

the existence of ground states of problem (1.1), the essential step is to verify that the mountain pass level 

defined above belongs to some reasonable interval. For this purpose, we choose the following test functions 
different from [8] and make subtle analyses. For the convenience of discussion, in what follows,  is fixed,

that is,  = 3.

Lemma 2.1. Under the assumptions of Theorem 1.1, one has 0 <  < 1
3


3
2.

Proof. Consider the functions (�): = (|�|), ∈ ℕ+, where
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and

0

1
 �  
2−

1+ 22  = −2

0


 �  
2−

1+ 2 

< −2

0


 �  −

= −2 1−

= 
1


it follows from (2.7) that

ℝ
 �  (|�|)  2� =  1


. (2.8)

As far as  
 is concerned, we have

ℝ3  �    � = 3 0

+∞
 �  2 () � ≥ 33


0

1
 �   


22

1+22

2


= 33



6−

2
∫0
  2

1+2

2
 (2.9)

≥ 33



6−

2 0

1
 �   

2

2

2
 = : 


6−

2

which is available for both  = 2∗ and  ∈ 4, 2∗ .

In the sequel, for any fixed , we consider the following map

  : =
2

2 ℝ3
 �   ∇

2
� +

2

2 ℝ3
 �  (|�|)  2� − 

2

2∗ ℝ3
 �    2∗�

−


 ℝ3
 �    � −

2∗

2∗ ℝ3
 �    2∗�,  ≥ 0

It is obvious that   →−∞ as  →+∞ and   → 0+as  → 0+. Thus, we can assume the existence of

 > 0 to guarantee that   takes its maximum value at  and

∇ 2

2
+

ℝ3  �  (|�|)  2� = 
2∗−2  2

2∗ + 
−2  

 + 2
∗−2  2∗

2∗. (2.10)

From (2.4), (2.5), (2.6), (2.8), (2.10) and

 
 ≤  2

2 2∗−
2∗−2  2∗

2∗(−2)
2∗−2 ,  2∗

2∗ ≤  2

2 2∗−2∗

2∗−2  2∗

2∗(2∗−2)
2∗−2 ,

we know that  possesses the uniformly (positive) lower bound and upper bound. As a result, when  =

3, ∈ (0,1) and  ∈ 4, 2∗ , together with (2.5), (2.6), (2.8) and (2.9), we infer that for  large enough

Theorem A.([8, Theorem 1.1]) Assume that  ∈ 2−4+2
−2

, 2∗ and conditions 1 − 3 hold. Let

 = 3,  ∈ 1,2 ;
 ≥ 4,  ∈ 0,2 ,

and

∗: =
1
2−

1
2∗



2∗

2∗−2

1
2−

1
2∗ 

2∗
2∗−2

≥  > 0, (1.2)

where  and  are defined in (2.1) and (2.2). Then equation (1.1) has a ground state solution  ∈ rad
1,2 ℝ, .

Moreover,  ∈ ∞ ℝ and  ∈ 1 ℝ ∖ {0} .

The above Theorem A states that, when  = 3, is limited to the interval (1,2). Therefore, an interesting

issue is to relax this restrict and prove that (1.1) also admits ground state solutions if  = 3 and  ∈ (0,1] just

like the case  ≥ 4 . Motivated by this observation, we still focus our attention on problem (1.1) and

complement the above Theorem A in the following sense.

Theorem 1.1. Assume that conditions 1 − 3 hold. Let  = 3, ∈ (0,1),  ∈ 4, 2∗ and 0 <  < ∗ ,

(1.1) has a ground state solution  ∈ rad
1,2 ℝ, . Moreover,  ∈ ∞ ℝ and  ∈ 1 ℝ ∖ {0} .

Remark 1.2.When  = 3 and  ∈ (0,1), it is obvious to see that 2−4+2
−2

= 2 + 2 < 4. In other words, our

conclusion could not cover the range between 2+ 2 and 4 , that is, (2+ 2, 4]. Meanwhile, from Theorem A

and our Theorem 1.1, we see that the case  = 1 is also not involved.

To achieve Theorem A and our Theorem 1.1, the next embedding plays an essential role.

Proposition B. (8 , Proposition 2]) Suppose that  ≥ 3 and condition 1 − 3 hold. Then the following

continuous embeddings hold:

�
1,2 ℝ, ↪  ℝ ,  ∈ 2∗ , 2∗ , ∈ 0,2 ;

�
1,2 ℝ, ↪  ℝ ,  ∈ 2∗, 2∗ , ∈ 2,2 − 2 ;

rad
1,2 ℝ, ↪  ℝ ,  ∈ 2∗,∞ , ∈ 2− 2,∞ .

The embeddings are compact if  ≠ 2∗ and  ≠ 2∗.

Obviously, Proposition B signifies that 2∗ is the embedding bottom index and 2∗ is the embedding top

index when  belongs to (0,2). However, for  ∈ (0,2), it gives that

2∗ = 2 + 4
2−2−

< 2 + 4
2−2−2

= 2−4+2
−2

= : 2�∗ . (1.3)

Hence, we believe that it is worth exploring the validity of the conclusions in the above Theorem A or Theorem

1.1 for the case  ≥ 3, ∈ (0,2) and  ∈ 2∗ , 2�∗ in the future work.

2. Proof of Theorem 1.1
We firstly introduce the associated energy space for problem (1.1). For  ≥ 3 , denote by  ℝ ,  ∈

[1,∞) , the usual Lebesgue space with its norm ‖‖: = ∫ℝ ||�
1
 . Let 1,2 ℝ : =  ∈
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Proof of Theorem 1.1. After establishing Lemma 2.1, the remaining is just to repeat [8, Lemma 5.3] to finish the 
proof of our Theorem 1.1. So we omit the details.
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we know that  possesses the uniformly (positive) lower bound and upper bound. As a result, when  =

3, ∈ (0,1) and  ∈ 4, 2∗ , together with (2.5), (2.6), (2.8) and (2.9), we infer that for  large enough


