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Abstract: This paper explores the issue of identifying rainbow embeddings within random graphs, which 
occur when all the edges of a subgraph are colored distinctly. Using probabilistic methods, we investigate the 
conditions under which a random graph contains such an embedding. Specifically,  for a specified graph H, when 
p is greater than the threshold, randomly select a color from the set of colors c to color the edges of graph G, then 
with high probability graph G contains a rainbow copy of H. These results provide new insights into the interplay 
between random graph theory and edge coloring, with potential applications in areas such as network design and 
combinatorics.
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1. Introduction
Graph theory, with roots tracing back over 200 years to Euler’s famous solution of the Königsberg bridge 

problem [6], has since become a fundamental mathematical discipline. It plays a crucial role across various 
domains, including computer science, biology, and network theory, where complex systems can often be 
represented as graphs. One problem that has garnered increasing interest is the study of random graphs and edge 
colorings, both for their theoretical significance and practical applications [1]. 

A particularly notable challenge in this area is the rainbow coloring problem, where the aim is to assign 
distinct colors to the edges of a graph so that no two edges within the same subgraph share the same color. When 
all edges in a subgraph are colored uniquely, this subgraph is referred to as a rainbow subgraph. The process 
of embedding a rainbow-colored subgraph within a larger graph, known as rainbow embedding, has become a 
central topic in random graph studies, with applications ranging from communication networks to distributed 
systems.

This paper investigates the existence of rainbow embeddings within random graphs, focusing on the 
probabilistic properties that determine when such embeddings occur. Building on earlier research in random 
graphs and combinatorics, we extend the analysis by identifying new conditions under which a random graph 
will almost certainly contain a rainbow copy of a specified subgraph. Utilizing probabilistic techniques, we derive 
tighter constraints on edge probabilities and the number of colors needed to ensure the presence of rainbow 
subgraphs. These results not only enhance the theoretical understanding of random graph dynamics but also offer 
insights relevant to real-world problems where edge coloring plays a key role.

The structure of the paper is as follows: Section 2 introduces the primary theoretical results, outlining the 
conditions required for rainbow embeddings in random graphs. In Section 3, we present supporting lemmas that 
assist in proving the main theorem. Section 4 contains a detailed proof of the theorem, followed by a discussion 
of its broader implications in Section 5.
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2. Conditions for Rainbow Embeddings in Random Graph
In this section, we outline the main theoretical results of this paper, focusing on the conditions that ensure 

random graphs contain rainbow embeddings of specific subgraphs. We analyze the random graph model ( , )n p ,  
exploring how the number of colors, edge probability p , and the size of the subgraph H interact to ensure that 
a rainbow copy of H appears with high probability. Our results offer refined bounds compared to existing work 
and shed new light on the probabilistic properties governing rainbow colorings in random graphs. Below, we 
introduce the results achieved by previous researchers and the conclusions obtained from the improvements made 
in this paper.

Let G be a graph (G belongs to ( , )n p ) where each edge is uniformly colored at random using one of the 
colors from the colors set [ ] : {1,..., }c c= . This model is known as ( , )c n p . For a specified graph H, if G includes 
a subgraph that is a copy of H with all edges colored in different colors, we state that a typical member of 

~ ( , )cG n p  has a rainbow copy of H. In [3], Frieze and Loh proved that for (1 ) log /p n nε≥ +  and ( )c n o n= +

, a typical member of ( , )c n p  contains a rainbow Hamilton cycle. Observe that their results are asymptotically 
optimized in terms of both p and the number of colors c. We will show that the boundary of p (edge probability) 

in the following theorem, then for the edge probability p, for any graph H with n vertices and ( ) (1)H O∆ = , we 
can find a rainbow copy of H in a typical member of ( , )c n p , as long as (1 (1)) | ( ) |c o E H= + .

Theorem 1. Let n be a sufficiently large integer, let 0α > , let 1∆ >  and md  be integers, let 

( , , )mH n d∈ ∆ . Then ~ ( , )cG n p  with high probability contains a rainbow copy of H, provided that 
1/ 3/logm md dp n n−≥  and (1 ) | ( ) |c E Hα= + .

3. Auxiliary lemmas
This section outlines several auxiliary lemmas that form the foundation for the proof of the main theorem. 

We utilize probabilistic bounds, particularly the Chernoff bound, to control the deviation of random variables 
in our random graph model. These lemmas help establish the conditions under which the rainbow subgraph 
embeddings are guaranteed. 

Prior to embarking on the proof, it would be advantageous to establish the subsequent notation for clarity 

and efficiency throughout the subsequent discourse. Given any bipartite graph ( , )G A B E=   and | | | |A B n= =  

with a specified minimum degree ( )G kδ ≥ , define a collection of bipartite graphs as ( )k outB G−
  where each 

member ( )k outD B G−∈   within this set possesses the same vertex set ( ) ( )V D V G=  and an edge set ( )E D E⊆ , 
constrained such that every vertex belonging to set A  exhibits a precise degree of k . Notably, a uniform random 

selection of an element from ( )k outB G−
  can be achieved by individually and randomly selecting k edges from 

( , )GE v B  for each vertex v A∈ .
We need to limit the large deviation of the random variable. We will primarily rely on the celebrated 

Chernoff inequality, which provides a tight bound on both the lower and upper extremities of the binomial 
distribution’s tail probabilities (see [5]).

Lemma 1. If ~ ( , )X Bin n p , then

	 2 /2( (1 ) ) for every 0;a npPr X a np e a−< − < >
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	 2 /3( (1 ) ) for every 0 3 / 2.a npPr X a np e a−> + < < <

Subsequently, we present more universally applicable bounds that are derived in a straightforward manner 
from the fundamental principles embodied in Chernoff's bound [2].

Lemma 2. Let , [0,1]p q∈  and let 1,..., {0,1}nX X ∈  be n indicator variables and 
1

:
n

i
i

X X
=

=∑ . If for each 

1 i n≤ ≤

	 1 1 1 1[ | ,..., ] and [ | ,..., ] ,i i i iX X X p X X X q− −≥ ≤ 

it holds for all 0 1a< <  that

	 2 2/2 /3( (1 ) ) and ( (1 ) ) .a np a nqPr X a np e Pr X a nq e− −≤ − ≤ ≥ + <

It is obviously that all graph ( , , )mH n d∈ ∆  is md -degenerate (but not vice versa). The subsequent 

observation is an immediate consequence of the very definition of md -degenerate graphs, showcasing a direct 
link between the two concepts.

Observation 1. Let n be a positive integer, and let 1∆ > , 0md >  be integers. Let H be a md -degenerate 
graph on n  vertices. Then it can ascertain the existence of a particular ordering 1( ,..., )nv v  of the vertices in graph 
H  such that the given condition

	 1 1| ( ) { ,..., } |i i mN v v v d− ≤

hold for every 2 i n≤ ≤ .
Lemma 3. Let G  be a graph on n  vertices with maximum degree 2∆ ≥ , let ( )D V G⊆  and the 

maximum degree of all vertices in D  is at most md  (where 1md ≥ ). Then, D  includes a set T D⊆  of size at 

least 
| |

k
m

D
d ∆

 which is k-independent in G.

In the later proof of main theorem, the following succinct lemma unveils a fundamental truth about the 

existence of perfect matchings in typical graphs from ( )k outB G−
  is one of the main ingredients.

Lemma 4. Let n  be a sufficiently large integer, let 0ε > , (log )k nω= . Then for any bipartite graph 
( , )G A B E=   with | | | |A B n= =  and ( ) / 2G n nδ ε≥ + , a graph D chosen uniformly at random from 

( )k outB G−
  with high probability contains a perfect matching.

Proof. Let D  be a graph chosen uniformly at random from ( )k outB G−
 . We prove that with high probability 

all subsets T A⊂  and all subsets T B⊂  with | | / 2T n≤  satisfy | | | ( ) |DT N T≤ . It then follows from Hall’s 
theorem (readers could be referred to [7] for more details) that D  has a perfect matching.

Initially, we suppose that T A⊂ . Observe that | | | ( ) |DT N T>  implies that there exists a subset T B′ ⊂  

of size | | | | 1T T′ = −  such that | ( , \ ) | 0DE T B T ′ = . Observe that in G , since | | / 2T n′ ≤ , every vertex 

v T∈  has at least nε  neighbors in \B T ′ . In selecting the i -th edge among the k  edge incident to vertex v , 
we meticulously consider the condition that none of the edges in ( , \ )GE v B T ′  have been previously chosen, the 
probability to miss \B T ′  is at most
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( ) 1 1 .

( ) 1
G

G

d v n i
d v i

ε ε− − +
≤ −

− +

Therefore,

	 [| | | ( ) |] [ || ( , ) | 0] D DPr T N T Pr T B E T B T′ ′> ≤ ∃ ⊂ =

	 | | | | (log )(1 )
| | 1

T k T nn
e

T
ε ωε − ⋅≤  −




≤



−

,

and the probability that bad condition exists is no more than

	
/2 /2

(log ) (log )

1 1
(1).

n n
t n t n

t t

n n
e e o

t t
ε ω ω− ⋅ − ⋅

= =

   
  ≤ = 
   

∑ ∑

Next, suppose that T B⊂  so as to have | | | ( ) |DT N T> , there should exist a set T A′ ⊂  of size | | 1T −  such 

that | ( \ , ) | 0DE A T T′ = . 

Observe that | ( , ) | | | ( / 2 )GE A T T n nε≥ ⋅ + , | ( , ) | | | | | | | / 2GE T T T T T n′ ′≤ ⋅ ≤ ⋅ ,hence | ( \ , ) | | |GE A T T T nε′ ≥
| ( \ , ) | | |GE A T T T nε′ ≥ . Every edge in G has at least a /k n  chance of appearing in D. Knowing that another edge is not in D can 

only make this probability lower, it follows that

	 [| | ( )] [ || ( , ) | 0] D DPr T N T Pr T A E T A T′ ′> ≤ ∃ ⊂ =  

	 | | | | (log )(log )1
| | 1

( )T n T nn n e
T n

ε ε ωω − ⋅≤
 



− ≤

 −

as in the earlier scenario.

4. Proof of main theorem
This section is dedicated to proving the main theorem. Our proof is motivated by ideas of Cooper and Frieze [4],  

and the proof idea is the same as method in [2], except that the parameters have been improved and some 
tighter bounds have been obtained. Notably, the presence of a rainbow copy of a fixed graph H  is a monotone 

increasing property. Consequently, we can confidently set the probability p  to exactly 1/ 3/logm md dn n− .
Initially, we build a ‘good’ partition, followed by outlining the procedure to locate the rainbow instance of H.

Let n  be a sufficiently large integer, let 0α >  be some arbitrarily small positive constant, let 1∆ >  

and md  be integers, let ( , , )mH n d∈ ∆ . Moreover, let 2 | ( ) | /d E H n=  denote the average degree of H
. Initially, we demonstrate how to partition H in a manner that facilitates obtaining a rainbow copy within a 

typical member of ( , )c n p , where (1 ) | ( ) |c E Hα= + . To achieve this, we proceed with the following steps. 

If 
H

 contains a set 
W

 of 25log
n

n
α 

 
 

 isolated vertices (that is, vertices of degree 0 in 
H

), then partition 

1( ) { } ... { }tV H w w W=     in such a way that for each i , the vertex iw  has at most md  neighbors in 

1 1{ ,..., }iw w − . In fact, since : ( | |, , )mH H W n W d′ = − ∈ − ∆ , Thus, this partition exists and is md -degenerate, 
allowing us to apply Observation 1. Otherwise, let x  denote the number of vertices of degree larger than 0 and at 

most d  in H. Since H contains at most 25log
n

n
α

 isolated vertices, then the following inequality is valid:
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	 22 | ( ) | ( 1) .
5log

( )ndn E H x d n x
n

α
= ≥ + + − −

Therefore, we confirm that / (2 )x n d≥  by using the fact that n is sufficiently large. Now, let S  be the set 
comprising all the vertices under consideration. By leveraging Lemma 3, specifically applied to H  and S , we 
derive a crucial conclusion. There exists a subset T S⊆ , that possesses two key properties: T  is 2-independent 
and its size

	 2 2 2 2
| || |

2 5log
S n nT

d d n
α 

≥ ≥ ≥  ∆ ∆  

for sufficiently large values of n. Next, let W T⊆  be an arbitrary subset of size 25log
n

n
α 

 
 

, and partition 

1( ) { } ... { }tV H w w W=     in such a way that for each i , iw  has at most md  neighbors in 1 1{ ,..., }iw w − .

In a nutshell, we obtain a partition 1( ) { } ... { }tV H w w W=     such that 2| |
5log

nW
n

α 
=  
 

 and one of 

the following holds:
1. All the vertices of W are isolated in H, or

2. W is 2-independent and consists of non-isolated vertices of degree at most d .
Observe that if (2) holds then

	 2 2

2 | ( ) | | ( ) || ( , \ ) | | |
5log 2 lo

 
g

E H n E HE W V W d W
n n n

α α 
≤ = ⋅ <      

 ,

for n large enough.

We begin by outlining the method for identifying the rainbow copy of H . Let / 2q p≥  be such that 
21 (1 )p q− = −  and present ~ ( , )G n p  as 1 2G G G=  , where 1G  and 2G  are two graphs sampled 

independently from ( , )n q , obviously q p≤ . We sample a member of ( , )c n p  by sampling a member of 

( , )n p  and the exposed edges are randomly colored using c  colors.

The process of embedding a rainbow copy of H  in ~ ( , )cG n p  is done in two phases. In the first phase, 

we obtain a rainbow embedding f  of 1[{ ... }]tH w w   with edges selected from 1G . If W  is as in (1) (that is 
to say, all the vertices in W  are isolated in H ), the embedding is complete. Otherwise, in the second phase, we 

show that it is possible to extend f  into a full rainbow embedding H in G, using edges of 2G .
Next, we detail the strategies employed in Phases I and II, demonstrating that the process succeeds with 

high probability.

Phase I: Throughout Phase I, we maintain a partial rainbow embedding f  of H  to 1G , a set of available 

vertices V ′  and a set of available colors  . Initially, set f =∅ , : [ ]c=  and : ( )V V G′ = . Additionally, for 

each vertex ( )v V G∈ we maintain a set ( )vU V G⊆  such that vU V ′  contains only unexposed potential 

neighbors of v  in 1G . At the start, ( ) \{ }vU V G v=  for each ( )v V G∈ .

We build the partial embedding f step-by-step. In the first step, let 1( ) :f w v=  for an arbitrary vertex 
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v V ′∈ , and set : \{ }V V v′ ′= . Suppose that we have already embedded 1 1{ ,..., }iw w −  for some 2 i t≤ ≤  and we 

want to embed : iw w= . Let 1 1( ) ( ( ) { ,..., })i H i iL w f N w w w −=   be the set of images of neighbors of iw  that 

have already been embedded (recall that | ( ) |i mL w d≤ ). Let ( )( )
iw v L w vA V U∈′=    be the set of all available 

vertices that are still unexposed neighbors of all vertices in ( )iL w , and choose an arbitrary subset w wS A⊂  of 

size 2:
(4 log )

ns
n

α 
=  ∆ 

 (Lemma 5 shows that throughout Phase I this is indeed possible, in other words, 
wA  is 

of size at least s ). Expose all edges between ( )iL w  and wS , and assign uniformly at random colors to all the 

obtained edges. Let wx S∈  be a vertex that is connected to all the vertices in ( )iL w  and such that all the colors 

assigned to edges { | ( )}ivx v L w∈  are distinct and belong to  . This process is guaranteed by Lemma 5. We 

extend f  by defining ( ) :if w x= , update \:v v wU U S=  for all ( )iv L w∈ , : \{ }V V x′ ′=  and

	 : { | ( )  such that  is colored in }.icol v L w vx col= ∈ ∃ ∈   

Then, if W  is as in (1) (that is, all the vertices in W  are isolated in H ), then we are done. Otherwise, we 
continue to Phase II in the following.

Phase II: Let * : ( ) \ ( ( ) \ )V V G f V H W= . Our purpose is to extend f  with a valid embedding of W  into 
*V , using the edges of 2G , in such a way that the resulting embedding is a rainbow embedding.

For w W∈  let ( ) : ( ( ))HL w f N w=  and let { ( ) | }L w w W= ∈ . Recall that W  is 2-independent and 

hence for ,u v W∈ , we have ( ) ( )L u L v =∅ . Let *( , )FF V E=   with edge set

	 *
1: { | , and ( )}F u LE Lv L v V uv E G∈= ∈ ∈ ∀ ∉

be the base graph used to construct a bipartite auxiliary graph *( , )B V . Edges that appear in 1G  are 

excluded because they cannot be recolored. Observe that *| | | | | |W V= =  and that the conditions of Lemma 4 
are satisfied by very rough estimation of F  in the following.

Claim: It holds with high probability that *4( ) | |
5

F Vδ ≥ .

Proof. For every L∈  and *v V∈  the edge FLv E∉  iff there exists u L∈  for which 1( )uv E G∈ . Since 

1 ~ ( , )G n q , we have that with high probability 1( ) 2G nq∆ ≤ , by applying Chernoff’s bound. Moreover, since 

for every L∈  we get that | |L d≤ , it follows that * *( ) | | 2 4 | | /5Fd L V d nq V≥ − > . A similar argument 

prove that we have *( ) 4 | | /5Fd v V≥  for every *v V∈ .

Below, we describe a random process aimed at constructing a bipartite graph 2log
( , ) ( )

n out
W F − 

∈     by 

exposing edges from 2 1\G G  and randomly coloring them. Initially, let

	 : { [ ] | , ( \ ) . .{ ( ), ( )} has color }col c u v E H W s t f u f v col= ∈ ∃ ∈  

observe that | | | ( ) |E Hα≥ , and choose an arbitrary ordering 1 | |,...,L L  of the elements in  . Then, in 

step 1 | |i≤ ≤  , set : ( )i F iN N L=  and create 2log n    edges from iL  to vertices in iN  as the following: so 
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long as *
2

( , )
| ( ) | logiV
N L n <    , iteratively select a vertex 

iv N∈  uniformly at random, set }\: {i iN N v=  and 

expose all edges from v  to vertices in iL  and color them uniformly at random with colors from [c] . Observe that 

the process will only fail at this stage if at some point 
iN =∅  while *

2
( , )

| ( ) | logiV
N L n <    . If all the edges 

are contained within 2G  and each edge has a distinct color, all chosen from the available set of colors  , add 

iL v  to *( , )V  . In the end of step i , remove all the colors that were used on edges incident to iL ,

	 *( , )
: { [ ] | , ( ) . . has color }.i iV

col c L v N L s t uv col= ∈ ∃ ∃ ∈
 

  

If this process is successful, then every matching   in *( , )V   is obviously rainbow in the sense that 
all edges in

	 { | . . }uv Lv s t u L∃ ∈ ∈

must have different colors that have not been used in the embedding during Phase I. Finally, if *( , )V   
contains a perfect matching, then we are done.

In the following, we demonstrate that the processes of Phase I and Phase II are successful with high 

probability, and that the constructed graph *( , )V   contains a perfect matching.
Lemma 5. The process of Phase I is successful with high probability.

Proof. First, in the whole phase I, we claim that 2| | / (4 log )wA n nα ≥ ∆   for every vertex ( )w V H∈  

which has not been embedded. The following four observations follow immediately from construction of 

embedding f
1. Observe that we have ( ) \{ }vU V G v=  for each ( )v V G∈  at the beginning of Phase I.

2. We update vU  only after embedding a vertex w  for which ( )v L w∈ , then we delete the set wS  which 

is of size 2/ (4 log )s n nα = ∆   from vU .

3. Every vertex v  is a member of at most ∆  sets ( )L w  (recall that ( )H∆ ≤ ∆ ).

4. Observe that 2| | / 5logV n nα′  ≥    throughout Phase I (recall that we do not embed W  in this phase).

Therefore, at any moment throughout Phase I, the following condition holds true, 2| | | | 1 / (4 log ) ,vU V V n nα′ ′  ≥ − −∆ ⋅ ∆   

2| | | | 1 / (4 log ) ,vU V V n nα′ ′  ≥ − −∆ ⋅ ∆   for each vertex ( )v V G∈ . Since | ( ) |L w ≤ ∆ , we confirm that 2 2
( )| | | ( ) | | | / (4 log )w v L w vA V U V n n sα∈′ ′  = ≥ −∆ −∆ ⋅ ∆ ≥    

2 2
( )| | | ( ) | | | / (4 log )w v L w vA V U V n n sα∈′ ′  = ≥ −∆ −∆ ⋅ ∆ ≥   , for n large enough.

Next, we demonstrate that whenever we aim to embed a vertex w , there is at least one available candidate 

in V ′ .

Let ( ) \w V H W∈ ,
1

: |{ | ( ) ( )} |w GX v S L w N v= ∈ ⊆ . Observe that X is the sum of i.i.d. indicator random  

variables 
vX  (for all 

wv S∈
) for which 1vX =

 iff 
1

( ) ( )GL w N v⊆ . Obviously, we have that 
3

2
log[ ] ( ) (log )

(4 log )
md n nX sq n

n n
α

≥ ≥ ⋅Ω = Ω
∆

  

3

2
log[ ] ( ) (log )

(4 log )
md n nX sq n

n n
α

≥ ≥ ⋅Ω = Ω
∆

 , then by applying Chernoff’s bound, (log )[ ] 1[ ] ( )
2

nXPr X e o
n

−Ω≤ = =
 .
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Now, observe that | | | ( ) |E Hα≥  throughout Phase I. Hence, the probability that for a vertex wx S∈  

with 
1

( ) ( )GL w N x⊆ , and all the edges to ( )L w  have distinct colors from C is at least

	 | ( ) | : 0,
((1 ) | ( ) |) (1 ) | ( ) | (1 )

( ) ( ) mdE H
E H E H d

α α γ
α α α




≥




  ≥ = >
+ + +











where | ( ) |L w =  . Thus, if  [ ] / 2X X≥   then the probability that there is no such x  is at most 
| | | | (log )(1 ) (1/ ).X X ne e o nγγ − −Ω− ≤ = =

Therefore, when we manage to embed w there exists with probability 1 (1/ )o n−  a vertex wx S∈  for 

that the following holds: I. x is connected to all the vertices in ( )L w . II. All of the colors assigned to the edges 
{{ , }: ( )}v x v L w∈  are distinct and belong to C.

Finally, observe that since we embed at most n vertices, we get that for every vertex iw  there exists a ‘good’ 

vertex wx S∈  by applying the union bound. Then, the proof is completed.
Lemma 6. The process of Phase II is successful with high probability.

Proof. First, observe that the process can only fail when we have that 
iN =∅  and *

2
( , )

| ( ) | logiV
N L n <     

*
2

( , )
| ( ) | logiV
N L n <     in some steps 1 | |i≤ ≤  . Hence, it suffices to prove that the process creates with probability  

1 (1/ )o n−  the 2log n    required edges in an arbitrary fixed step 1 | |i≤ ≤   . Let 
2

: { ( ) | ( ) |}.i F i i GX v N L L N v= ∈ ⊆   

2
: { ( ) | ( ) |}.i F i i GX v N L L N v= ∈ ⊆ Observe that | |iX  is the sum of i.i.d. indicator random variables ,i vX  (for all ( )F iv N L∈ ) for which 

, 1i vX =  iff 
2
( )i GL N v⊆ . Obviously, we have that (recall that | |i mL d d≤ ≤ )

	
3 3

2
log 3 log[| |] | ( ) | ( ) (log )

5
 

4 log
( ) ( )md

i F i
n n nX N L q F n

n n n
αδ≥ ≥ ⋅Ω ≥ ⋅ ⋅Ω = Ω .

We get that (log )[| |][| | ] (1/ )
2

ni
i

XPr X e o n−Ω≤ = =


 by applying Chernoff’s bound.

Next, let	 : { }i iY v X= ∈ , the vertex v  satisfies the condition that all edges in ( , )iE L v  have distinct 

colors (color select from  ). Observe that | |iY  is the sum of i.i.d. indicator variables ,i vY  (for all iv X∈ )  

for which , 1i vY =  if and only if all edges in ( , )iE L v  have different colors from  . Since we have that 
2| ( , \ ) | | ( ) | /(2 log )E W V W E H nα  ≤    and we remove for each edge in ( , \ )E W V W  at most 2log n    

colors from  , the number of available colors in   is invariably at least | ( ) | /2E Hα . Therefore, the 

probability that for a vertex iv X∈  all the edges to iL  have distinct colors from   is at least

	 | ( ) | /2 : 0
((1 ) | ( ) |) (1 ) | ( ) | (1 )2

( ) ( )d
i

E Hp
E H E H d

α α γ
α α α

 

= ≥ ≥ = >
+




+ +











,

where | |iL d= ≤ , this lower bound for ip  remains valid regardless of all other color assignments made in 
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earlier steps. Hence, if | | [| |] / 2i iX X≥  , then the expectation of | |iY  is at least

	 [| |] | | ( [| |]) (log )i i iY X X nγ≥ ⋅ = Ω = Ω 
and by applying Chernoff’s bound, we obtain that

(log )[| |] [| |][| | || | ] (1/ )
2 2

ni i
i i

Y XPr Y X e o n−Ω< ≥ = =
 

.

We confirm that the probability that our process fails is at most

	
| |

2

1
[| | log ] | | (1/ ) (1).i

i
Pr Y n o n o

=

 ≤ ≤ ⋅ = ∑




Ultimately, since we select a random ordering of the neighbors of iL , every 2log n   -tuple of neighbors 

of iL  has an equal probability of being included in *( , )V  , ensuring that the process samples an element of 

2log
( )

n out
F

−
  uniformly at random.

Therefore, the processes of Phase I and Phase II are both successful by above lemmas. Then the proof of 
main theorem is completed.

5. Conclusion and Discussion
In this paper, we explored the conditions for the existence of rainbow embeddings in random graphs, using 

probabilistic techniques. By extending the random graph model ( , )n p , we established that for certain edge 
probabilities and a sufficient number of colors, a random graph will almost certainly contain a rainbow copy of a 
given subgraph H . Our work enhances previous studies by tightening the bounds on both the edge probability 
p  and the number of required colors, making the findings relevant for practical applications in areas like 

network design and distributed systems.
Our findings suggest several paths for future research. Extending this analysis to dynamic random graphs 

may provide more adaptable models for real-world networks. Refining the bounds on p  and the number of 
colors could lead to more efficient algorithms for rainbow embeddings. Moreover, studying the relationship 
between rainbow embeddings and graph properties such as connectivity may yield further theoretical insights.

Despite these contributions, challenges remain. For example, we assume uniform edge coloring, which 
is not always applicable in practice. Adapting our methods for biased or non-uniform colorings would be an 
important future direction. While our results improve existing bounds, further refinement could enhance their 
practical relevance. Overall, our work deepens the theoretical understanding of rainbow embeddings and offers 
potential for both theoretical advances and real-world applications in graph theory.
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