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Abstract: This article aims to delve into the principles of generative learning and its applications in image 
generation tasks by constructing cartoon image generation models and handwritten digit generation models. The 
experiment is based on the innovation of model architecture using Deep Convolutional Generative Adversarial 
Network (DCGAN), including adding convolutional layers to enlarge image size and applying Gaussian 
filtering and average pooling in cartoon image generation tasks, as well as designing conditional generative 
adversarial networks to generate handwritten images of specific numbers based on labels in handwritten digit 
generation tasks. The experiment elaborated on the model architecture, data processing, training process, and 
testing methods, and explored the impact of different network architectures and parameter settings on model 
performance. The results indicate that the proposed model architecture can effectively improve the quality of 
image generation, providing new ideas for the research and application of generative learning.
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1. Introduction
The aim of this experiment is to gain a deeper understanding of the principles of generative learning and its 

applications in image generation by constructing two generative models - the cartoon image generation model 
and the handwritten digit generation model. The main purpose of the experiment is to master the basic theory 
and implementation techniques of generative models, including Generative Adversarial Networks (GANs) and 
Variational Autoencoders (VAEs). At the same time, the experiment will explore the impact of different network 
architectures and parameter settings on model performance, such as layers, convolution kernel size, learning rate, 
and batch size, to optimize image generation quality. In terms of data processing, we will explore how to collect, 
clean, and preprocess image data, and evaluate the quality of generated images.

2. Model architecture and innovation
2.1. Cartoon image generation

In the cartoon image generation task, an enhanced generator was designed by adding a convolutional 
layer to the original DCGAN, enlarging images to 128x128 pixels, and applying Gaussian filtering and average 
pooling for smoothness and noise reduction. The discriminator retains the DCGAN structure but introduces layer 
outputs for feature matching loss calculation. The generator creates high-resolution images through multi-layer 
deconvolution, followed by Gaussian filtering and pooling. The discriminator extracts features through multi-
layer convolution, outputting discrimination results and layer feature maps for loss calculation and generator 
training guidance.
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2.2. Handwritten digit generation

For handwritten digit generation, a cGAN generator named Generation-mnist was designed, expanding 
input from 100 to 110 dimensions with 10 for labels. It has five deconvolutional layers, upsampling input to a 
28x28 image, with batch normalization and ReLU/LeakyReLU. Tanh maps outputs to [-1,1]. The conditional 
discriminator Discretionar_monster, like DCGAN but adjusted, outputs an 11-dimensional Sigmoid vector for 
multi-classification (0-9). This enhances conditional generation by determining image authenticity and classifying 
numbers.

3. Experimental core code

3.1. Cartoon image generation

(1) Data section
When preparing the dataset, preprocessing was performed on the images, including randomly flipping 

10% of the images horizontally to enhance the model’s generalization ability, and standardizing the images. 
Use transforms Compose combines these transformations, loads image data through ImageFolder, and builds a 
training data loader DataLoader.
print(“prepare dataset”)
data_dir=’../data/resized_anime_face_part’
transform=transforms.Compose([
transforms.RandomHorizontalFlip(p=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5,0.5,0.5),std=(0.5,0.5,0.5))
])
dset=datasets.ImageFolder(data_dir,transform)
train_loader=torch.utils.data.DataLoader(dset,batch_size=batch_size,shuffle=True)

(2) Model section
Generator and discriminator: explanation as above
(3) Training section
Initialize the generator and discriminator models and move them to the specified device.

generator=Generator(ngf,output_channels).to(device)
discriminator=Discriminator(ndf,input_channels).to(device)

Configure loss function and optimizer, and set learning rate adjustment strategy. Select binary cross 
entropy loss function and custom loss function, use Adam optimizer to optimize the parameters of generator 
and discriminator respectively, and set different initial learning rates. At the same time, configure learning rate 
adjusters with exponential decay for both to gradually reduce the learning rate. Start training, i epochs, each 
epoch has j batches
for i in range(epoch):
for j,data in enumerate(train_loader):

During the training process, the gradients of the discriminator are first cleared and real images are 
obtained from the dataset. If the batch size is smaller than the preset value, skip the current iteration. After 
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assigning labels to the image, input the real image into the discriminator, calculate the output and loss, and 
perform backpropagation to update the weights. Next, identify false images and calculate the loss to update the 
discriminator. Subsequently, the generator is trained to clear its gradients and generate fake images, which are 
then fed into the discriminator to calculate the loss. The generator weights are updated through backpropagation. 
At the same time, calculate the feature matching loss and update the weights to ensure that the loss is negligible 
and the loss value is reasonable before updating.
gen_optim.zero_grad()
gen_dis_fake,_,dis_fake_rof=discriminator.forward(gen_fake)#Judgment on false images
gen_loss=torch.sum(loss_func(gen_dis_fake,y_real_))#Encourage fake images to be more authentic
gen_loss.backward()
gen_optim.step()
gen_loss_rof=torch.sum(loss_func_rof(dis_real_rof,dis_fake_rof))
gen_loss_rof=gen_loss_rof.detach_().requires_grad_(True)
gen_loss_rof.backward()
gen_optim.step()

At the end of each training cycle, save the currently trained generator and discriminator models to the 
specified paths. The file name contains the task name and model type. At the same time, update the learning 
rates of the generator and discriminator, and gradually adjust them using pre-defined learning rate adjustment 
strategies (such as exponential decay) to meet the needs of the training process.
save(generator,model_path+”/”+task+”_generator.pth”)
save(discriminator,model_path+”/”+task+”_discriminator.pth”)
gen_step_schedule.step()
dis_step_schedule.step()

(4) Testing section
To ensure that the same image is generated each time for comparison, a fixed set of random numbers 

fixed_z is set. This set of random numbers has a specified shape and follows a standard normal distribution. 
Subsequently, convert this set of random numbers into tensors and move them to the designated device. When 
generating images, turn off gradient calculation to avoid unnecessary computational overhead.
fixed_z=torch.Tensor(batch_size,100,1,1).normal_(0,1).to(device)
with torch.no_grad():
fixed_z=Variable(fixed_z)

At each epoch of the training process, set the generator to evaluation mode to generate an image. Using the 
previously fixed random number fixed_z as input, the generated fake image is propagated forward through the 
generator. Afterwards, switch the generator back to training mode. Move the generated images to the CPU and 
use the image_check function to save the first 25 images to the specified path. The file name should include the 
task name and the current epoch number for subsequent comparison and analysis.
generator.eval()
gen_fake,_=generator.forward(fixed_z)
generator.train()
gen_fake=gen_fake.cpu()
image_check(gen_fake.data[:25],i,save_path+’/’+task+’_’+str(i+1)+’.png’)
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After training, conduct model testing. Firstly, load the generator model and set it to evaluation mode. To 
generate test images, a random number seed is set to ensure the reproducibility of the results, and a set of random 
numbers is generated as input. Subsequently, false images are propagated forward through the generator and 
moved to the CPU. Finally, use the image_check function to save the generated image to the specified path for 
viewing the effect of the model generated image.

3.2. Handwritten digit generation

(1) Data section
Prepare the MNIST dataset and specify the data storage path as/ data,  Select the training set and apply a 

series of image transformations: resize the images to image_2, crop the center to image_2, convert to tensors, and 
standardize them. If the dataset does not exist, it will be automatically downloaded. Subsequently, create a data 
loader using DataLoader, set the batch size to batch_2, and enable random shuffling of data order to enhance the 
model’s generalization ability.
dataset=torchvision.datasets.MNIST(
root=’../data’,
train=True,
transform=transforms.Compose([transforms.Resize(image_size),transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5,),(0.5,)),]),
download=True)
##Create data loader
train_loader=torch.utils.data.DataLoader(dataset=dataset,batch_size=batch_size,
shuffle=True)

(2) Model section
Defined a generator called generator-mnist for handwritten digit generation. This generator inherits from 

nn Module,  Contains one input layer and four deconvolution layers. The input layer receives a 110 dimensional 
vector (containing 100 dimensional noise and 10 dimensional digital labels), outputs a feature map through the 
first deconvolution layer (layer1), and gradually upsamples through subsequent deconvolution layers (layer2 
to layer4). Finally, the fifth deconvolution layer (layer5) outputs a generated image with a specified number of 
channels (default is 3, but in this task it should be set to 1, representing grayscale images) and size (64x64 pixels). 
After each deconvolution layer, the batch normalization layer and activation function (ReLU or LeakyReLU) are 
followed. The last layer uses the Tanh activation function to map the output values to the [-1,1] interval to fit the 
range of image pixel values.

(3) Training section
In the model section, a generator called Generation-mnist was defined for handwritten digit generation. 

This generator inherits from nn Module,  Contains one input layer and four deconvolution layers. The input 
layer receives a 110 dimensional vector (containing 100 dimensional noise and 10 dimensional digital labels), 
outputs a feature map through the first deconvolution layer (layer1), and gradually upsamples through subsequent 
deconvolution layers (layer2 to layer4). Finally, the fifth deconvolution layer (layer5) outputs a generated image 
with a specified number of channels (default is 3, but in this task it should be set to 1, representing grayscale 
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images) and size (64x64 pixels). After each deconvolution layer, the batch normalization layer and activation 
function (ReLU or LeakyReLU) are followed. The last layer uses the Tanh activation function to map the output 
values to the [-1,1] interval to fit the range of image pixel values.

generator=Generator_mnist(ngf,output_channels).to(device)
discriminator=Discriminator_mnist(ndf,input_channels).to(device)
Prepare loss function and optimizer: use binary cross entropy loss (BCELoss) as the loss function of the 

discriminator, and cross entropy loss (CrossEntropy Loss) for conditional label prediction of the generator (if 
applicable); Configure Adam optimizers separately for the generator and discriminator, with different learning 
rates set, where the learning rate of the generator is 5 times that of the discriminator. Next, the training process 
begins by iterating through each epoch and every batch within it through nested loops: the outer loop traverses 
epochs a certain number of times, and the inner loop traverses every batch data in the data loader train-loader.
loss_func=nn.BCELoss()
loss2=nn.CrossEntropyLoss()
gen_optim=torch.optim.Adam(generator.parameters(),lr=5*learning_rate,betas=(0.5,0.999))
dis_optim=torch.optim.Adam(discriminator.parameters(),lr=learning_rate,betas=(0.5,0.999))
Start training, i epochs, each epoch has j batches
for i in range(epoch):
for j,data in enumerate(train_loader):

To train the discriminator, first clear its gradient and obtain real images and labels. If the batch size is too 
small, skip the iteration. Input real images and labels into the discriminator, calculate their loss (including image 
and label parts), and perform backpropagation. Generate fake images and labels, calculate the discriminator’s 
loss on them, and update weights through backpropagation. Calculate the average output for real and fake 
images to evaluate performance. To identify fake images, generate a noise vector, concatenate it with labels, and 
pass through the generator to get fake images. Input fake images into the discriminator, reshape its output, and 
calculate image and label losses using binary cross-entropy and cross-entropy loss functions, respectively. Use 
retain_graph=True for future gradient calculations. Calculate the average output for fake images, accumulate 
losses to get the total loss, and update discriminator parameters using the optimizer.

When training the generator, clear its gradient and set the label to real. Generate a fake image using the 
generator and input it into the discriminator to obtain a discrimination result. Reshape the result into a 2D tensor 
and extract separate discrimination values for the image and label parts. Calculate two losses: one for the image 
part (encouraging the discriminator to treat the fake image as real) and one for the label part (ensuring the image 
matches the specified label). Use binary cross-entropy for the image loss and cross-entropy for the label loss. 
Perform backpropagation to update generator weights. Note that retain_graph=True is usually unnecessary due to 
PyTorch’s dynamic graph, unless multiple .backward() calls are required. Finally, calculate the average output of 
the discriminator for the generated image and update generator parameters using the optimizer.
generator.zero_grad()
label.fill_(real_label)
gen_dis_fake=discriminator(gen_fake).view(-1)
gen_dis_fake=gen_dis_fake.view([b_size,11])
real_label_label=gen_dis_fake[:,0]
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real_label_pic=gen_dis_fake[:,1:]
gen_loss=loss_func(real_label_label,label.float())
gen_loss.backward(retain_graph=True)
dis_fake_pic=loss2(real_label_pic,data[1])
dis_fake_pic.backward()
D_G_z2=gen_dis_fake.mean().item()
gen_optim.step()
Save model (for each epoch)
save(generator,model_path+”/”+task+”_generator.pth”)
save(discriminator,model_path+”/”+task+”_discriminator.pth”)

(4) Testing section
During training, at each epoch’s end, set the generator to eval mode for stable image generation. Create 

a random noise tensor and a one-hot encoded label tensor (e.g., all labels set to 9). Concatenate them to form 
generator input, convert to a PyTorch tensor, and move to the correct device. Forward propagate through the 
generator to get the fake image. Switch the generator back to train mode for the next epoch. Move the generated 
image to the CPU and use a custom function to save/display it.
generator.eval()
noise=torch.randn(batch_size,100,device=device)
labels_onehot=np.zeros((batch_size,10))
labels_onehot[np.arange(batch_size),9]=1
noise=np.concatenate((noise.cpu().numpy(),labels_onehot),axis=1)
noise=noise.reshape([-1,110,1,1])
noise=Variable(torch.from_numpy(noise).float()).to(device)
gen_fake=generator.forward(noise)
generator.train()
gen_fake=gen_fake.cpu()
image_check_for_mnist(gen_fake.data[:25],epc,save_path+’/’+task+’_’+str(epc+1)+’.png’)

After the training is completed, enter the model testing phase. Firstly, load and prepare the generator model, 
set it to evaluation mode to ensure stable performance when generating images. Then, generate random noise 
and a single hot encoded label of the specified number, concatenate the two and input them into the generator to 
generate a fake image. Finally, use the imshow function of matplotlib to visualize one of the generated images, 
and save all generated images using the image_check_for_mnist function (or similar function).

4. Experimental summary
This study implemented an image generation system using DCGAN. DCGAN captures image features 

with convolutional layers, enhancing realism and detail. It preserves spatial information by avoiding pooling 
layers, using stride-2 convolutions for downsampling. To address training imbalance, a feature matching loss 
function was introduced. Visualizing intermediate layer outputs deepened understanding of CNNs, aiding 
network optimization. This experiment enhanced understanding of conditional GANs and accumulated practical 
experience, supporting future image generation research.
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