探讨生态园林在矿区生态修复中的作用机制

鱼雷

国家能源集团神东煤炭集团生态环境管理中心,中国・陕西 榆林 719000

摘 要: 矿区环境破坏是当前环境保护与修复领域面临的重大挑战之一。生态园林作为一种集生态学原理与景观设计于一体的修复策略,为矿区生态恢复提供了新的视角和方法。论文探讨了生态园林在矿区生态修复中的应用及其作用机制,着重分析了生态园林的设计与实施策略,并强调了科学规划、本土植物的应用及其可持续管理的重要性。生态园林不仅能够有效促进生物多样性的恢复和土壤稳定性的提升,还在水资源管理、气候调节和社会经济价值的提升上发挥着重要作用。论文还展示了如何结合矿区的具体条件来科学设计和维护生态园林,以实现环境的持续改善和生态价值的增加。

关键词: 生态园林; 矿区生态修复; 生物多样性; 本土植物; 可持续管理

Exploring the Mechanism of Ecological Landscape in Ecological Restoration of Mining Areas

Lei Yu

CHN Energy Shendong Coal Ecological Environment Management Center, Yulin, Shaanxi, 719000, China

Abstract: Environmental damage in mining areas is one of the major challenges facing the current field of environmental protection and restoration. Ecological landscaping, as a restoration strategy that integrates ecological principles and landscape design, provides a new perspective and method for ecological restoration in mining areas. This paper explores the application and mechanism of ecological landscaping in ecological restoration of mining areas, with a focus on analyzing the design and implementation strategies of ecological landscaping. It emphasizes the importance of scientific planning, the application of local plants, and their sustainable management. Ecological landscaping not only effectively promotes the restoration of biodiversity and the improvement of soil stability, but also plays an important role in water resource management, climate regulation, and the enhancement of socio-economic value. The paper also demonstrates how to scientifically design and maintain ecological gardens based on the specific conditions of mining areas, in order to achieve sustainable environmental improvement and increase ecological value.

Keywords: ecological landscape architecture; ecological restoration of mining areas; bio-diversity; native plants; sustainable management

0 前言

由于中国是一个资源消耗型大国,矿产资源需求量巨大,矿产资源带给我们经济利益的同时,也引发了诸多社会性问题。开采破坏土地资源,产生大量矿山废弃地,使人地矛盾日益尖锐。随着城市化进程的加快,废弃矿山的健康发展问题日益受到人们的关注。废弃矿山对景观及生态环境造成了严重破坏,极大地制约了城市生态文明的发展。废弃矿山的生态恢复和景观重建是目前亟须解决的重要问题,其改造方式逐渐从单纯复绿模式转向综合治理和景观修复。废弃矿山景观修复与设计研究有利于提高人居环境的质量,保障生态环境可持续发展。论文将探讨生态园林在矿区生态修复中的应用机制与实施策略,为矿区生态园林的设计与管理提供科学依据和操作建议。

1 生态园林与矿区生态修复的理论基础

1.1 生态园林的概念与特征

生态园林通常以生态学原理为指导,并强调人与自然

环境的和谐共生。其核心含义在于将原有园林景观与功能性 生态系统要素相结合,为维持生物多样性、调节区域小气候 以及改善土壤环境提供可行路径。依据地域属性和功能侧 重,可将该类型园林区分为城市型、湿地型以及山地型等多 种形式。每类形式均致力于综合利用地形地貌、水文条件及 植被资源,进而形成适应性较强的生态综合体。

从实践层面看,此种园林模式在环境修复方面具有多重功能。涵养水源方面,它能够有效拦蓄地表径流,并通过植被层及土壤层的渗透过程,对地下水进行补给。土壤改良方面,其根系网络不仅稳定地表,还对土壤微生物群落形成正向刺激。与此同时,生物多样性保护也受益于多层次植物配置和复合栖息地构建,使区域内的动植物得以恢复并维持健康的种群结构。

1.2 矿区生态修复的需求与目标

矿区由于采掘、堆放等行为,往往呈现植被破坏、土 壤退化以及水体污染等典型生态问题。岩石裸露和地表塌陷 易导致局部景观破碎,风蚀及水蚀随之加剧,导致土壤养分 和水分流失。某些矿区还会存在酸性废水或含重金属废渣,为周边地带的环境安全埋下隐患。

基于上述现实压力,矿区生态修复旨在重构完整的生态结构,并确保系统功能逐渐向良性方向演变。具体目标包括恢复土壤肥力、提升植被覆盖率,以及维持区域内水循环平衡。然而,受限于地质条件、气候因素和经济投入,修复过程中常面临植被成活率低、土壤理化性质难以迅速改善等瓶颈。因而,选择合适的生态重建手段、制定科学的管理方案,对于矿山环境的全面修复具有重要意义。

1.3 生态园林在矿区生态修复中的契合性

矿区生态修复注重重塑稳定且具备自我调节能力的生态系统,生态园林的内在机理则与此高度契合。其植被群落设计与土壤改良措施不仅能够加快生态系统早期演替,还能为后续的植被群落演化创造条件。再者,生态园林拥有多样化的景观构建手段,能在对景观美化的同时,为恢复区域的功能性生态网络提供助力。

从矿区修复的整体目标来看,与生态园林的功能取向之间存在较强的匹配度。前者要求恢复土壤环境、改善地表及地下水循环,并兼顾生物多样性;后者正好通过植被培育、立体绿化和生态廊道建设等手段,保障修复区内重要生态过程的正常运行^[2]。由此可见,将生态园林的设计理念融入矿区综合整治方案,不仅可以在环境指标方面取得突破,也能够为区域可持续发展奠定基础。

2 生态园林在矿区生态修复中的具体作用机制

2.1 生物多样性保护与恢复机制

生物多样性的保护与恢复是矿区生态园林的关键机制之一。通过引入多样性植被种植模式,生态园林不仅增强了生态系统的复杂性,而且促进了生态平衡的实现。在种植策略上,优先选择本地和适应性强的植物,这些植物更能承受矿区特有的环境压力。例如,通过配置耐旱、耐污染的植物种类,可以构建一个既稳定又有复原力的生态系统,有效地提高生物多样性,同时帮助恢复自然的食物链和生态关系。

此外,这种多样性植被种植模式还具有显著的辅助作用,如提供生境、食物源和避难所给本地野生动物,从而进一步强化了矿区生态系统的稳定性与韧性。这种策略不仅在生物层面上重建了生态系统,还有助于恢复和增强生物间的相互作用和依赖,确保生态功能的全面恢复。

2.2 土壤改良与稳定机制

在矿区生态修复中,土壤的稳定和改良是另一个至关重要的方面。生态园林通过植物根系的生长促进了土壤结构的改良。根系的穿透和扩展作用不仅增加了土壤的孔隙度,还有助于改善土壤的通气和渗水性能,从而促进土壤微生态的健康发展。这种生物地工技术在矿区修复中尤其重要,因为它能够有效固定土壤,防止土壤侵蚀,同时促进土壤中有机质的积累和养分的循环^[3]。

植物种植还带来了额外的生态益处,如通过植物对土壤中营养元素的吸收和循环,逐步恢复土壤的肥力。特别是通过植物根系分泌的有机酸和其他生物化学物质,可以增强土壤中有益微生物的活性,进一步加速土壤恢复过程。因此,适当的植物选择和种植模式不仅对改善物理土壤条件至关重要,也是化学和生物土壤健康的关键。

2.3 水资源优化与循环机制

在矿区生态修复过程中,水资源的优化与循环是至关重要的一环。生态园林通过植物群落的截留与蒸腾作用,有效地管理降水,并优化水资源的利用。植物的截留作用减缓了降水冲击,通过增加水分在地表的停留时间,提高了水分渗透率,从而促进了地下水的补给。同时,植物的蒸腾作用帮助调节地区水循环,通过释放水蒸气回到大气中,形成一个闭环的水循环系统。

此外,通过生态园林配置的水体如池塘和湿地,不仅增加了生态景观的美感,还起到了自然的水净化作用。这些水体能够通过物理和生物过程,如沉积和植物吸收,减少污染物的浓度,改善水质。因此,生态园林在减少矿区水土流失和改善地下水循环方面,扮演了一个不可或缺的角色,为矿区生态系统的恢复和水资源的持续可用提供了坚实的基础。

2.4 气候调节与环境美化机制

生态园林在调节矿区小气候方面具有显著的效应。通过植被的遮阴和蒸腾作用,生态园林能有效调控局部温度,降低极端天气条件下的温度波动,从而为矿区提供一个更为温和的气候环境。此外,植物还能通过吸收空气中的二氧化碳及其他污染物,提高空气质量,这不仅有助于减缓气候变化的影响,还能显著改善居住环境。

从环境美化的角度看,生态园林通过精心设计的景观元素,如树木、草本植物、水体以及岩石等,大大提升了矿区的视觉吸引力。这种景观的改善不仅增强了区域的生态价值,还提高了人们对矿区环境的满意度和归属感^[4]。通过这些设计,生态园林成为连接人与自然的桥梁,促进了社区的环境意识,同时为矿区带来了社会文化与经济上的长远利益。

2.5 社会文化与经济价值机制

生态园林在矿区的建设不仅是生态修复的一个方面, 更深层地推动了绿色经济的发展。通过这些生态项目的实施,不仅创建了与环保相关的就业机会,例如在园林养护、 生态旅游和环境教育领域,也促进了当地经济的多元化,从 而减少了对传统矿业的依赖。此外,生态园林的存在增强了 区域的吸引力,吸引游客和新居民,带动了周边商业的兴旺 发展,进一步激活了矿区的经济环境。

与此同时,生态园林作为公共空间,提供了丰富的休 闲和文化活动场所。这些区域不仅提供了矿区居民休闲娱乐 的去处,更是教育和文化交流的平台,通过设立的环保教 育中心和户外教学活动,增进了居民对生态保护的理解和参与。因此,生态园林不仅改善了矿区的生态环境,也提升了居民的生活质量,强化了社区的凝聚力,有力地表明了生态建设与社区发展之间的密切联系。

3 生态园林在矿区生态修复中的实施策略

3.1 科学规划与设计

在设计生态园林时,需要首先对矿区地质结构、地表 沉陷范围以及水文条件等要素展开系统排查,并将所得数据 与气候、土壤等信息整合到地理信息系统中进行分析。通过 这种途径,可以针对不同地块的受损程度和功能需求,将园 林分为科研试验区、景观展示区与恢复保育区等若干功能分 区。科研试验区适合布设新型植物育种或土壤改良技术的试 点工程,便于后续在大范围内推行。景观展示区可根据周边 风貌,采取错层式种植或利用高低起伏地形布局小型水体和 步道,形成易于参观和维护的整体格局。恢复保育区需要在 规划阶段重点关注植被覆盖率与土壤紧实度之间的平衡,通 过适度开挖排水沟或修筑拦水坝,减少地表径流对于幼苗的 冲击。在具体施工阶段,建议使用便携式地形监测仪器对挖 掘深度和坡度变化进行动态调控,并为每个分区设置明确的 管控措施。

3.2 本土植物的选择与应用

在进行植物选择时,应注重引入适应当地气候与土壤环境的乡土树种和草本植物。例如,干旱半干旱地区可优先考虑耐旱灌木与抗逆草种,以便在土壤贫瘠和降水有限的环境下维持基本的植被覆盖。对于含金属离子较高的尾矿区,可考虑种植具有超富集特性的植物,为后续的污染土壤治理提供辅助途径。若施工方希望加快植被生长速度,可采用苗圃培育与容器移栽相结合的方式,在苗圃阶段就对根系进行强化训练,再运至现场定植。此类方法能够提升成活率并缩短植被恢复周期。种植排列也要注重多样性与空间层次,一方面可在层间配置乔木与灌木,以加强光合作用与小气候调节作用;另一方面可采用网格化或环状布置,为后续巡检和灌溉设置提供便利。通过这一系列规划,本土植物与矿区环境将实现较高程度的融合。

3.3 可持续管理与维护

在项目投运后,需要建立长效的维护机制,确保生态 园林的健康发展。可在各功能区设置观测点,通过自动化监 测仪器周期性采集土壤含水率、空气湿度及植物生长状态等 参数,并及时将数据上传至统一管理平台。若监测结果显示 某一区域植被枯萎率上升,则可迅速调配灌溉设备或调整施肥策略。对于容易出现次生塌陷或地质活动的地段,可布置预警体系,实时观察地表位移变化^[5]。与此同时,建议在社区范围内鼓励居民成立园林维护合作组织,利用就地取材的方式,定期开展除草、松土和树木修剪等基础性养护。在管理模式上,还可通过签订共管协议的形式,引导矿区企业、地方政府和社会团体共同出资与参与。这样一来,管理责任和技术支持得以多元化,减少因人力或资金不足导致的维护缺失。通过上述针对性的管理举措,矿区生态园林不仅能够维持持续运转,还可以在复杂的自然与社会条件下实现良性循环。

4 结语

生态园林不仅提升了生物多样性,改善了土壤和水质, 还通过调节区域微气候,增强了矿区的环境稳定性和美观 性。这些成效标志着生态园林技术在实际应用中的重要价值 和潜力。展望未来,鉴于生态园林在矿区修复中的显著效益, 建议进一步扩大其技术和方法的应用范围。为此,需要从政 策和科研两个层面加大支持力度。第一,政府应制定更为有 力的政策,鼓励采用生态园林技术进行矿区恢复,包括提供 财政补贴、税收优惠及技术支持等。第二,学术机构和研究 者应当加强对生态园林相关技术的研究,探索更多适应不同 矿区环境的生态植被配置和土壤改良技术。第三,推动多学 科交叉合作,如生态学、景观设计学与环境科学等,将进一 步丰富生态园林的设计理念与实施策略。综上所述,通过科 学的规划、持续的研究和政策的支持, 生态园林有望在全球 范围内的矿区生态修复项目中,发挥更加关键和积极的作 用。这不仅能够有效促进环境的可持续发展,同时也为地方 社区的经济与文化发展带来新的活力。

参考文献:

- [1] 陈延永.张家口市废弃石灰岩矿生态修复与景观设计[D].郑州: 河南农业大学,2021.
- [2] 朱晗宇.基于风景园林生态设计的煤矿废弃地改造探讨[J].低温建筑技术,2020,42(6):17-21.
- [3] 张耀,张赫然,毛洪亮,等,矿区棕地治理与生态修复——以安徽省 定远县废弃矿山为例[J].现代园艺,2021,44(21):114-117.
- [4] 吴问琦.两淮矿区采煤塌陷国土空间生态修复及景观提升策略研究[J].绿色科技,2021,23(15):102-103+108.
- [5] 任亦询.风景园林视角下资源枯竭型城市露天煤矿生态修复与 景观再生研究[D].北京:北京林业大学,2022.