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Abstract: The proliferation of deep models characterized by an abundance of parameters has catalyzed research 

enthusiasm in the domain of AI systems. The emergence of novel computational modalities has brought forth 

numerous fresh challenges within the realm of cloud computing, encompassing aspects such as cost, performance, 

elasticity, and the intricate tradeoffs entailed therein. 
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Introduction and Observation 

The recent advancements in the field of deep learning, such as ChatGPT[1,2], BERT[3], and LLaMA[4] 

have spurred research in the realm of cloud computing pertaining to the exploration of large-scale models. These 

deep models, characterized by their formidable parameter magnitudes, have exhibited a noteworthy propensity 

for generalization. Concurrently, the amelioration of their overall capabilities has engendered a substantial 

demand for bespoke solutions. Consequently, cloud computing is poised to assume the role of the principal 

undergirding infrastructure for customized largescale model inference in the forthcoming era. Nonetheless, this 

development has engendered pervasive apprehensions regarding the adaptability of extant cloud computing 

infrastructure, which is primarily tailored to accommodate lightweight applications, such as microservices, to 

the shifting paradigms encapsulated within this burgeoning landscape[5–9]. 

Large-scale models typically require substantial computational resources, thereby imposing high 

infrastructure requirements when executed within on premises data centers, often necessitating the deployment 

of thousands of accelerator cards. Consequently, the utilization of cloud computing infrastructure, such as 

distributed clusters, has become a prevalent approach for conducting both inference and training tasks. By 

leveraging the exceptional elasticity and pay-as- you-go resource-sharing capabilities of cloud computing, it 

becomes economically feasible to ensure high-performance operations for large-scale models, encompassing 

desirable attributes such as low response latency and high throughput capacities. As the demand for increasingly 

specialized and tailored services continues to rise, the adoption of cloud computing for computational purposes 

emerges as an inexorable trend. Nonetheless, the cloud computing infrastructure initially designed to cater to 

traditional service models encounters challenges when confronted with the distinct computational patterns 

associated with large-scale models. 

One formidable challenge that looms large in the realm of large-scale model inference is the constricting 

elasticity of cloud computing engendered by the specter of cold starts. While long-term online traffic exhibits 

discernible periodicity, the capricious nature of transient bursts eludes precise prognostication. Thus, the 

expeditious scalability to contend with unforeseen upswings becomes an imperative concomitant to the act of 

downscaling. Moreover, the quantitative quantification of resource interference and the consequent 

implementation of robust interference isolation mechanisms unfurl as latent hurdles. Ergo, the quandary of 

whether and when to effect resource amalgamation crystallizes as a topic of discernible import warranting 

meticulous discourse. 
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During the training or finetuning stages of large-scale models, it is customary to synchronize an extensive 

array of parameters at each iteration. This practice, in turn, engenders potential challenges on the data center 

networking front. Furthermore, owing to the requisite persistence of parameters at every training step, storage 

conundrums ensue within the domain of cloud computing, encompassing a confluence of localized and 

centralized storage paradigms. In the inference phase, data transmission assumes a relatively parsimonious guise, 

albeit the aspect of latency assumes paramount importance. For instance, empirical observations attest that the 

inference time for a GPT model boasting 175 billion parameters typically hovers within the realm of 300 

milliseconds. Consequently, the aegis of averting SLO transgressions becomes a panoramic discourse, spanning 

the breadth of the landscape. 

Contemporary approaches primarily concentrate on optimizing the utilization of cluster resources during 

the training phase[9–16], with a specific emphasis on harnessing model parallelism to enhance resource 

efficiency. This entails decomposing the model into sub-models structured as chains or directed acyclic graphs 

to bolster parallelism or harnessing intra-operator parallelism to expedite response speed. However, this approach 

may prove inadequate for the forthcoming era of customized large-scale model cloud computing. Within the 

realm of cloud computing, a salient discernment lies in the envisioning of a manifold of models, epitomizing an 

unparalleled tapestry of diversity, underscored by their bespoke and expertly tailored attributes. 

Concomitantly, an abundance of proprietary models graces the landscape, ushering forth the sine qua non 

of data privacy and endowing the fabric of security isolation with resolute fortitude. Directly applying training 

methodologies to inference in customized models does not yield the desired optimization performance. The 

characteristics imposed by processes like backpropagation, parameter aggregation, and parameter parallelism 

during model training create constraints that render existing optimization methods unsuitable for the inference 

stage. 

The characteristics of the training phase, including back- propagation, parameter merging, and parameter 

parallelism, impose constraints that render existing optimization methods inapplicable to the inference stage. 

Nevertheless, inference already holds an overwhelming numerical advantage in current cloud services, as 

exemplified by Amazon Web Services, which reports allocating 90% of its resources to inference. Presently, 

research on optimizing model inference performance remains focused on single-cluster scenarios. Strategies such 

as traffic prediction, request consolidation, and memory tensor merging are explored to enhance resource 

utilization and efficiency[11,17–21]. 

The systems research domain calls for a holistic solution that strikes a balance between performance and 

cost. This paradigm engenders an open-ended discourse, replete with an expansive terrain awaiting exploration, 

thereby constituting a pivotal focal point for the next phase of inquiry within the systems research domain. 
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