
Information Fusion Research (2023) Volume 1 Issue 1 doi:

Received: 2 June 2023 Accepted: 1 August 2023 Available online: 13 Novermber 2023

Copyright © 2023 by author(s). Information Fusion Research is published by Arts and Science Press. This is an Open Access article

distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), permitting

distribution and reproduction in any medium, provided the original work is cited.

Original Research Article

Optimizing Automatic Voltage Regulation: A Deep Reinforcement Learning

Approach

Ahmed Sweilam O. Mohsen 1, M.A. Moustafa Hassan2

1 Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt,

e-mail: ahmed.sweilam95@gmail.com

2 Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt

e-mail: mmustafa@eng.cu.edu.eg

*Corresponding author： ahmed.sweilam95@gmail.com

Abstract: This paper presents a novel approach to enhance the performance of Automatic Voltage Regulator

(AVR) systems in power systems using Deep Reinforcement Learning (DRL). The AVR plays a critical role in

maintaining voltage stability and ensuring reliable power delivery. However, conventional control strategies,

such as PID controllers, have limitations in handling complex and nonlinear power system dynamics. In this

study, the application of DRL techniques is explored, particularly the Twin-Delayed Deep Deterministic Policy

Gradient (TD3) algorithm, to AVR control. This algorithm offers the advantage of handling continuous action

spaces and enable the controller to learn optimal control policies directly from the system's state information.

The results show that the DRL approach outperforms the traditional PID and Neural Network-based control

approaches, with the shortest time response and the best voltage regulation performance. The use of DRL in

AVR system control shows promising potential for improving the efficiency and accuracy of power system

control. This research provides insights into the advantages of DRL for process control and highlights its

potential for future applications in power system control.

Keywords: Deep reinforcement learning, Process control, AVR system, TD3 agent, PID controller, Neural

network controller, Optimization, Artificial intelligence.

1. Introduction

Ensuring a stable terminal voltage and frequency is crucial for maintaining a reliable power system that can

meet the needs of all its users. Voltage stability is a critical issue that greatly impacts the reliability of power

systems, and has been the subject of extensive research over the years. By adjusting the excitation current, it is

possible to regulate both the generator terminal voltage and the amount of reactive power supplied to the grid.

The stability of the power system is critically dependent on the synchronous generator's excitation mechanism.

AVR is a closed-loop control system made to regulate the synchronous generator's terminal voltage and maintain

it within specified limit ranges[1].

While new algorithms have been proposed for regulating synchronous generator’s terminal voltage, many

industrial systems still rely on the conventional Proportional-Integral-Derivative (PID) based AVR design due to

its simplicity and ease of implementation[2]. Conventional PID controllers have certain drawbacks. Firstly, they

require full knowledge of the system, which is a difficult task to achieve. Additionally, they are linear controllers

which makes them unsuitable for nonlinear systems that are prevalent in real-world applications.

Nonlinear control techniques have gained popularity in recent years and are continuously evolving. These

techniques have been demonstrated to be more efficient in ensuring stability in power systems. Artificial Neural

Information Fusion Research (2023) Volume 1 Issue 1 2 / 17

Networks (ANNs) are one such nonlinear approach that can be particularly useful for modeling complex,

dynamic power systems. ANNs with their nonlinear structure are well-suited for modeling systems that are

challenging to represent mathematically. Moreover, ANNs' capability as universal function approximators

enables them to accurately approximate any continuous nonlinear function with arbitrary precision[3].

In this paper, conventional PID based AVR controller will be developed where PID parameters will be

optimized using Particle Swarm Optimization (PSO) till satisfactory response is achieved then several input and

output patterns will be compiled and stored as data which will be used to train the proposed AVR controllers,

ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS), in MATLAB/Simulink environment. Model free

DLR will be introduced then finally results will be compared.

2. Related Work

While PID-based controllers are commonly used for AVR, their tuning process is manual and can result in

suboptimal performance. Various optimization techniques, such as Ziegler Nichols (ZN), Genetic Algorithms

(GA) and PSO, have been proposed to enhance PID tuning, but they still have limitations in dealing with

nonlinearities and uncertainties.

ZN method has been widely employed for tuning controllers in the past, as evidenced by[4]. However, this

method has limitations in terms of ensuring optimal performance, as its efficacy is primarily dependent on the

complexity and order of the plant. Both GA and PSO are advanced techniques that are often utilized to improve

PID tuning. The study in[5] employed both ZN and GA for PID tuning, with GA exhibiting better performance

over ZN. The study conducted in[6], introduced the use of PSO to efficiently search for the optimal PID controller

parameters of an AVR system.

New control system design strategies, such as ANNs and ANFIS, have been investigated and developed in

recent decades to deal with the significant nonlinearities seen in most real control systems. In[7], it was

demonstrated that ANNs AVR exhibited superior performance when compared to conventional PID controllers.

In[8], Probabilistic Neural Network (PNN) based AVR controllers were implemented in MATLAB/Simulink and

showed improved transient stability and reduced overshoot and settling time compared to conventional PID-

based controllers at various loading conditions.

The usage of ANFIS based controller combines the advantages of both fuzzy logic and NN to achieve a

more accurate control of the AVR system. In[9], a design procedure for ANFIS-based AVR is presented, which

results in an improved system dynamic response when compared to conventional AVRs.

The application of Deep Reinforcement Learning (DRL) in controlling AVR systems is a recent research

trend, where the controller learns from interacting with the environment to achieve optimal performance. While

still in the early stages, DRL-based AVR controllers have presented promising results and potential for further

improvement. The use of DRL is particularly suitable for controlling AVR systems in dynamic and uncertain

environments, where traditional control methods may struggle to adapt. Therefore, DRL has the potential to

revolutionize the design and operation of AVR systems in the future.

3. System Model and Proposed Techniques

It is widely recognized in the power systems community that variations in real power demand primarily

impact system frequency, while changes in reactive power demand mainly influence the voltage magnitude. To

regulate the reactive power output of a generator, the most commonly employed method is to manipulate the

generator excitation control using AVR system.

An increase in the generator's reactive power load leads to a reduction in the magnitude of the terminal

voltage. A potential transformer can be used for measuring the voltage magnitude on a single phase, which is

then rectified and compared to a DC set point signal. The generated error signal is then employed to regulate the

exciter field and raise the exciter terminal voltage. As a result, there is an increase in the generator field current,

leading to a rise in the generated emf. Therefore, the production of reactive power is adjusted to reach a new

Information Fusion Research (2023) Volume 1 Issue 1 3 / 17

equilibrium, resulting in an increase in the terminal voltage to the desired level[10].

3.1 Model of an AVR System

To simplify the comparison between different algorithms, a linearized model of the AVR system has been

utilized for performance evaluation. AVR system is composed of four primary components: the amplifier, exciter,

generator, and sensor. In order to establish the mathematical model and transfer function of these components,

linearization involves considering the primary time constants and neglecting nonlinearities such as saturation [11].

The schematic diagram of a simplified AVR is illustrated in Figure 1.

As presented in[12], the adopted values of an AVR system are given by: KA = 10; KE =1; KG =1; KS =1;

TA=0.1s; TE =0.4s; TG =1s; TS =0.01s.

3.2 PSO Based PID Controller

PSO is an evolutionary computation technique inspired by the collective behavior of social animals such as

birds and fish. The algorithm works by having individual particles where each moves individually and accelerates

towards the personal best location while evaluating the fitness value of its current position. The fitness value for

a particular position is determined through the evaluation of a fitness function at that specific location.

Figure 1 Synchronous generator with AVR only.

The fitness function is the objective function that is used to determine the optimality of a solution. The PSO

algorithm uses the fitness function to determine the quality of the current solution and guide the particles towards

the optimal solution. So, in the event that a particle's current position has a fitness value superior to its personal

best, the personal best is then updated to the current position. Every particle within the swarm is aware of the

global best, which is the location with the best fitness value for the entire swarm. As the particles move along

their trajectory, they compare the fitness value of their Personal Best (Pbest) with that of the Global Best (gbest)

at each point. If a particle's Pbest has a higher fitness value than the current gbest, then the gbest is updated to

the Pbest of that particle. This allows the swarm to collectively converge towards the global optimum. Finally,

once all particles approach the position with the best fitness value of the swarm, their movement is stopped[13,14].

Each particle within the swarm has its own position and velocity, (𝑋𝑖, 𝑉𝑖) which are updated as following:

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘) (Eq.1)

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (Eq.2)

Where:

𝑣𝑖
𝑘 : Velocity of the 𝑖𝑡ℎ particle at the 𝑘𝑡ℎ iteration.

𝑥𝑖
𝑘 : Current position (or solution) of the ith particle at the 𝑘𝑡ℎ iteration.

𝑐1, 𝑐2 : Acceleration coefficients, usually are Eq. 2.

𝑟1, 𝑟2 : Two random variables with uniform distribution between 0 and 1.

𝑤 : Inertia weight which shows the effect of the previous velocity vector on the new vector.

𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 : Personal best position of the 𝑖𝑡ℎ particle at the 𝑘𝑡ℎ iteration.

𝐺𝑏𝑒𝑠𝑡𝑘 : Global best position within the swarm at the 𝑘𝑡ℎ iteration.

Information Fusion Research (2023) Volume 1 Issue 1 4 / 17

As presented in[14], Figure 2 describes pseudocode of PSO algorithm:

Figure 2 Peseudo code of PSO Algorithm.

In the context of tuning a PID controller using PSO, the fitness function can be designed to evaluate the

performance of the PID controller. So, a fitness function based on dynamic performance indices, as expressed in

Eq. 3, is utilized as follows:

𝐽 = 𝑤1 ∗ 𝐸𝑠𝑠 + 𝑤2 ∗ %𝑂𝑆 + 𝑤3 ∗ 𝑡𝑠 + 𝑤4 ∗ 𝑡𝑟 (Eq.3)

Where:

𝑒(𝑡) : Error signal in time domain

%𝑂𝑆 : Overshoot Percentage

𝑡𝑟 : Rise Time

𝑡𝑠 : Settling Time

𝑤1, 𝑤2, 𝑤3 : Weighting factors used to determine which performance criteria is more important.

3.3 Artificial Neural Networks

The human brain is a sophisticated and intricate system that operates in a nonlinear and parallel manner.

This enables it to perform complex tasks such as pattern recognition, perception, and cognitive control at

remarkable speeds, surpassing any current computer technology available.

ANNs are a type of machine learning that imitates the structure of the human brain. The objective of ANNs

is to replicate the biological mechanisms that form the basis of information processing in the human brain, such

as pattern recognition, decision-making, and perception. ANNs consist of a network of artificial neurons that

communicate with each other through connections, or synapses. These artificial neurons are modeled using a

nonlinear differential function, such as a sigmoidal function. ANNs can be composed of multiple layers,

including input, hidden, and output layers, to enable complex computations[15].

ANNs are commonly used in supervised learning tasks, which involves training a model to make predictions

or classifications based on input data that is labeled with the correct output, due to their ability to approximate

and learn complex non-linear relationships between input and output variables. The back-propagation training

algorithm is the most commonly used training algorithm for supervised learning using ANN. In this algorithm,

the input data is fed into the network, which processes it through a series of layers that apply a non-linear

transformation to the input. The output is then compared to the correct output label, also known as the target

value, and the error is backpropagated through the network to adjust the weights of the connections between the

Information Fusion Research (2023) Volume 1 Issue 1 5 / 17

neurons[16,17].

Algorithm 1 demonstrates the pseudo-code for the back-propagation training algorithm[23].

3.4 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) is a subfield of machine learning that combines the principles of

Reinforcement Learning (RL) with Deep Neural Networks (DNN). Figure 3 illustrates the fundamental elements

of the RL framework[18]. The agent is the responsible for learning and decision-making. It interacts with the

environment by selecting actions 𝐴𝑡 , which lead the environment to a new state 𝑆𝑡+1 . The environment

provides feedback on performance through rewards or penalties, represented as 𝑅𝑡+1. As the agent interacts with

the environment, It seeks to maximize the rewards which encourages good actions allowing it to learn the best

policy.

Figure 3 Building blocks of standard RL problem.

In the field of control systems, it is common to refer to the controller being designed as the agent and to the

system outside the controller, including the industrial process, reference signal, and other sensors, as the

environment. The desired optimal-control behavior that the designer seeks is referred to as the policy. RL makes

it possible to learn the desired behavior without requiring excessively detailed modeling of the system.

The fundamental elements of RL are briefly described as follows:

Policy: is a mechanism that defines an agent's behavior at any given time. It maps the states of the

environment to the corresponding actions that the agent should take in those states. It is a critical component of

an RL agent since it determines the agent's behavior. The policy can be deterministic, represented by (𝑠), or

stochastic, represented by 𝜋(𝑎|𝑠). Where 𝜋(𝑎|𝑠) represents the probability of taking action 𝑎𝑡 = 𝑎 when the

state 𝑠𝑡 = 𝑠.

Algorithm 1: The back-propagation algorithm for learning in multilayer networks.[23]

1: function BACK-PROP-LEARNING (𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘) returns a neural 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

2: inputs: examples, a set of examples, each with input vector 𝐱 and output vector 𝐲

network, a multilayer network with 𝐿 layers, weights 𝑤𝑖,𝑗 , activation function 𝑔

3: local variables: Δ, a vector of errors, indexed by network node

4: repeat

5: for each weight 𝑤𝑖,𝑗 in 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 do

6: 𝑤𝑖,𝑗 ← a small random number

7: for each example (𝐱, 𝐲 𝐣) in examples do

8: / * Propagate the inputs forward to compute the outputs * /
9: for each node 𝑖 in the input layer do

10: 𝑎𝑖 ← 𝑥𝑖
11: for 𝓵 = 𝟐 to 𝑳 do

12: for each node 𝑗 in layer ℓ do

13: 𝑖𝑛𝑗 ← ∑𝑖  𝑤𝑖,𝑗𝑎𝑖

14: 𝑎𝑗 ← 𝑔 𝑖𝑛𝑗

15: / * Propagate deltas backward from output layer to input layer * /

16: for each node 𝑗 in the output layer do

17: Δ[𝑗] ← 𝑔′ 𝑖𝑛𝑗 × 𝑦𝑗 − 𝑎𝑗

18: for ℓ = 𝐿 − 1 to 1 do

19: for each node 𝑖 in layer ℓ do

20: Δ[𝑖] ← 𝑔′ 𝑖𝑛𝑖)∑𝑗  𝑤𝑖,𝑗Δ[𝑗]

21: / * 𝑈𝑝𝑑𝑎𝑡𝑒 every weight in network using deltas * /

22: for each weight 𝑤𝑖,𝑗 in 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝐝𝐨

23: 𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + 𝛼 × 𝑎𝑖 × Δ[𝑗]

24: until some stopping criterion is satisfied

25: return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

Information Fusion Research (2023) Volume 1 Issue 1 6 / 17

Reward: A reward function, denoted as 𝑟𝑡, serves as a numerical signal provided to an RL agent, reflecting

its performance in relation to its objectives. This function supplies immediate feedback from the environment

based on the agent's actions. As the agent interacts with the environment, it receives rewards for favorable actions

and penalties for unfavorable ones. In this way, the reward function guides the agent's decision-making policy,

motivating it to pursue actions that lead to higher cumulative rewards over time.

Value function: is a function that estimates the desirability of taking a specific action in a given state. While

a reward signal gives feedback on the immediate goodness of the current action, value function provides an

evaluation of long-term goodness based on the expected cumulative sum of discounted rewards that the agent is

likely to receive starting from a given time step 𝑡 onwards. Where the return, denoted by 𝑅𝑡, is expressed as

follows:

𝑅𝑡 = ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘 , 0 ≤ 𝛾 ≤ 1. (Eq.4)

The value function, denoted by 𝑉𝜋(𝑠), provides an estimation of the expected return for a given state 𝑠

when the agent follows a specific policy 𝜋,

𝑉𝜋(𝑠) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠] (Eq.5)

The example, illustrated in Figure 4, demonstrates the difference between Reward and Value functions.

Start 2 3 4 5 6 7

0 0 0 1 0 0 10

11 12 13 0 14 15 Goal

Action

Total
Reward
= 37

Total
Reward
= 65

Figure 4 Examples for The Difference Between Reward and Value Functions.

Action-Value function: also referred to as the Q-function, denoted by 𝑄𝜋(𝑠, 𝑎), represents the expected

cumulative sum of rewards the agent can expect to receive starting from state 𝑠, taking a specific action 𝑎, and

thereafter following a specific policy 𝜋. It provides an estimate of how good it is to perform a given action in a

given state.

It can be expresses as follows:

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (Eq.6)

Model-based and model-free RL methods: Model-based methods rely on having an accurate model of

the environment, which provides access to a table of probabilities for being in a state given an action, as well as

associated rewards. This allows for planning the next action and reward. In contrast, model-free methods for RL

do not require an explicit environment model and rely solely on trial-and-error learning using sensory input[18].

The agent learns either a value function or a policy that enables it to make decisions without the need for

environment simulation. However, this approach may require more data and experience to converge to an optimal

solution. Although both methods have been extensively studied in the literature, model-free techniques have

gained greater prevalence[19]. Therefore, this research paper will focus on model-free RL in the following sections.

Q-learning: is a Temporal-Difference (TD) control algorithm that enables the iterative learning of Q-values

for each state-action pair. The algorithm tracks the value of 𝑄𝜋(𝑠, 𝑎) for every state-action pair. Upon

performing an action, 𝑎 in a state 𝑠, the algorithm updates 𝑄𝜋(𝑠, 𝑎) using two feedback elements from the

environment: the reward R and the subsequent state 𝑆𝑘+1, as demonstrated in Eq.7, where alpha (𝛼) represents

the learning rate. The off-policy nature of Q-learning allows the algorithm to learn the optimal policy, even when

following a different exploration policy.

𝑄𝑛𝑒𝑤(𝑠𝑘 , 𝑎𝑘) = 𝑄𝑜𝑙𝑑(𝑠𝑘, 𝑎𝑘) + 𝛼 (𝑟𝑘 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑘+1, 𝑎) − 𝑄𝑜𝑙𝑑(𝑠𝑘 , 𝑎𝑘)) (Eq.7)

Information Fusion Research (2023) Volume 1 Issue 1 7 / 17

Actor–Critic methods: The actor-critic algorithm is a popular real-time RL method that combines aspects

of value-based and policy-based methods. It consists of two main components: the actor and the critic. The actor

learns a policy for selecting actions, while the critic learns the value function for each state. Under a given policy,

the actor applies an action to the environment and receives feedback, which is evaluated by the critic. The

learning process involves two steps: first, the critic performs policy evaluation, and then the actor performs

policy improvement. This algorithm enables continuous state and action spaces and supports online learning. Its

success has been demonstrated in various applications such as robotics, and control systems.

Within the field of DRL, parameterized policies are commonly employed. A parameterized policy is a policy

that outputs a value based on a set of adjustable parameters, represented as 𝜃. These parameters can be modified

using an optimization algorithm, resulting in changes to the policy's output. The policy that is controlled by 𝜃

is referred to as 𝜋𝜃. Parameterized policies are frequently implemented using NN, where 𝜃 corresponds to the

weights and biases of the network. It is important to note that in this context, the optimization algorithm aims to

find the optimal set of parameters 𝜃 that maximizes the expected return.

Commonly used algorithms in control systems: Applying RL in continuous control systems poses

significant challenges, such as dealing with high-dimensional state and action spaces and ensuring stable learning.

Recently, two algorithms have exhibited promising results in addressing these challenges: Deep Deterministic

Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3).

DDPG: is an off-policy actor-critic RL algorithm that extends the deterministic policy gradient algorithm

to work with continuous action spaces. It utilizes an actor network to estimate the optimal policy and a critic

network to approximate the Q-value function. DDPG is known for its stability and scalability in dealing with

high-dimensional state and action spaces.

Algorithm 2 demonstrates pseudo-code for DDPG algorithm as explained in[20].

TD3: is an extension of the DDPG algorithm that uses two critics to prevent overestimation of the Q-value

function. It also employs a target policy smoothing technique to regularize the learned policy and improve its

stability. TD3 has been demonstrated to outperform DDPG on various continuous control tasks and is considered

one of the state-of-the-art algorithms in this field.

Algorithm 3 demonstrates pseudo-code for DDPG algorithm [21].

Information Fusion Research (2023) Volume 1 Issue 1 8 / 17

4. Simulation Results and Discussion

In this section, the simulation results and discussion will be presented for the proposed controller design for

AVR systems using DRL. At first, the model of the AVR system is introduced, and the time response of the

system without any controller is presented. This serves as a baseline for comparing the performance of the

controllers were implemented in our study. The results of the PSO-based PID controller are then presented,

including details about the experimental setup, such as the number of populations in the swarm and the objective

function weights used for optimization. Insights into the tuning of the PSO-based PID controller are also provided,

and its limitations in terms of performance are discussed. Subsequently, the NN-based controller is presented,

which is implemented as a supervised learning algorithm using training data obtained from the previous

technique. The design of the NN, including the number of layers, the number of neurons, and the chosen

activation function, is explained. Finally, the DRL-based AVR controller is presented. Additionally, the time

response of the AVR system under the DRL-based controller is presented and compared to the other controllers.

In summary, a comprehensive analysis of the performance of different controllers for AVR systems is provided,

with the strengths and limitations of each approach being highlighted.

4.1 System Without Controller

As a first step, AVR system response without controller is discussed using linearized model of system

presented in Section 0.

4.1.1 Simulink Model

4.1.2 Terminal Voltage Response Without Controller

Simulation result displayed in Figure , demonstrates the importance of using a controller. where the system

response exhibits oscillatory response with a large SSE, which is not acceptable for stable and reliable power

systems.

4.2 PSO Based AVR Controller

As discussed earlier, a dynamic performance indices-based multi-objective function will be used. Where its

weights are chosen as follows:

𝑤1 = 0.5 , 𝑤2 = 0.5 , 𝑤3 = 0.5 , 𝑤4 = 0.5

Information Fusion Research (2023) Volume 1 Issue 1 9 / 17

Figure 5 Block diagram of AVR system without controller.

Figure 6 Response of AVR system without a controller.

PSO parameters are chosen as follows:

𝑐1 = 2, 𝑐2 = 2, 𝑟1, 𝑟2 = 𝑟𝑎𝑛𝑑(0,1), 𝑤 = 0.7

𝑁𝑜. 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 100,𝑁𝑜. 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = 20

The searching space of each parameter of PID controller is chosen as follows:

𝐾𝑃 ∈ [0.1 10], 𝐾𝐼 ∈ [0.1 10], 𝐾𝐷 ∈ [0.1 10]

After running PSO, obtained PID parameters is as follows:

𝐾𝑝 = 2.4182 𝐾𝐼 = 0.2546 𝐾𝑝 = 0.5533

Where best cost value obtained is displayed in Figure 7:

Information Fusion Research (2023) Volume 1 Issue 1 10 / 17

Figure 7 PSO Best Cost Versus iterations.

4.2.1 Simulink Model

Simulink model for implementing the obtained controller’s parameters is illustrated in Figure .

Figure 8 Simulation block diagram of AVR system with PID controller.

4.2.2 Terminal Voltage Response with PSO-based PID Controller

AVR time response using PSO-based PID is displayed in Figure as follows:

The results illustrated, depicts an improvement in system time response.

Before going throw implementation of supervised learning via NN, training data sets will be generated

utilizing the previous controller designed with PSO.

4.3 NN based AVR Controller

4.3.1 Training Input/Output Data

As it is important to capture all information about the system, input data captured is error signal, integration

of error and derivative of error. Where the output signal is the control action. Figure describes the model used

to generate training data.

Information Fusion Research (2023) Volume 1 Issue 1 11 / 17

Figure 9 Response of AVR system with PSO-based PID controller.

Figure 10 Generating Training Data Set.

4.3.2 NN Structure

After obtaining Input/Output data sets needed to train NN, MATLAB NN Toolbox is used to create,

configure and train the NN. Where four hidden layers were used, each with five neurons and tanh activation

function. Network structure is illustrated in

Figure 11 Neural Network Structure used for Supervised Learning Based AVR controller.

Information Fusion Research (2023) Volume 1 Issue 1 12 / 17

4.3.3 Simulink Model

After training is done, NN based controller can by implemented as presented in Figure :

Figure 12 AVR System with Neural Network Based Controller.

4.3.4 Terminal Voltage Response With Controller

As represented in Figure 13, simulation result demonstrates how much NN is good in learning system

dynamics. Where it has a response similar to PSO-based PID with a slightly higher overshoot.

Figure 13 Response of AVR system with NN supervised learning.

4.4 DRL Based AVR Controller

4.4.1 Simulink Model

Since DRL incorporates different terms in the control system, such as: (reward, observation, agent, etc.),

system model will a slightly different. Where Simulink diagram for DRL agent is represented in Figure as

follows:

Information Fusion Research (2023) Volume 1 Issue 1 13 / 17

Figure 14 Closed-loop control structure of AVR System incorporating DRL agent.

4.4.2 Reward Function

It’s important to note that reward function could be considered the main driver that pushes the system for a

particular response, so it’s vital to properly design it. The following figure represents the reward function in

terms of Simulink blocks:

Figure 15 DRL Reward Function Formulation.

Reward function can be mathematically expressed as illustrated in Eq.8:

𝑟𝑡 = 𝑅1 + 𝑃1 + 𝑃2 + 𝑃3

𝑅1 = 1, |𝑒| < 0.01

𝑃1 = −300, 𝑒 < −0.2 (Eq.8)

𝑃2 = −2 × ∫ 𝑡 × |𝑒|

𝑃3 = −500000, 𝑉𝑟𝑒𝑓 ≥ 5 || 𝑉𝑟𝑒𝑓 ≤ −5

4.4.3 Terminal Voltage Response with Controller

As shown in Figure , time response for AVR system incorporating DRL agent as a controller depicts a huge

improvement in voltage regulation which seems to be the best among previously presented controllers.

The following section will delve into the comparative evaluation of the DRL-based controller in relation to

the controllers introduced within this paper as well as those featured in the existing literature.

Information Fusion Research (2023) Volume 1 Issue 1 14 / 17

Figure 16 Response of AVR system with a DRL-based controller, TD3.

4.5 Discussion

The following figure present performance comparison between different control techniques presented in

this paper:

The remarkable outcomes attained by the application of DRL in the regulation of the AVR system are

presented in Figure . The system's response, as depicted in Figure , highlights the remarkable improvements

realized by the DRL controller concerning time response characteristics, including settling time, overshoot, and

steady-state error.

The resulted time response notably exceeds those obtained from alternative controllers, such as PSO-based

PID and supervised learning using NN, thus establishing DRL as the preferred choice for achieving optimal and

precise control of the AVR system.

The table presented below provides a summary of the performance metrics obtained from the simulation

results of the AVR system. The table includes the values of steady-state error, settling time, and percentage of

overshoot for each controller employed in this paper for the control of AVR system.

Figure 17 Response of AVR system with PSO-based PID, NN supervised learning and TD3 agent.

Information Fusion Research (2023) Volume 1 Issue 1 15 / 17

Table 1 Time Response Comparison for Different Proposed Controllers.

Controller SSE Ts(sec) Tr(sec) % O.S

PSO-based PID 0.004 1.3162 0.2735 0

NN supervised learning 0.0049 1.4381 0.2317 5.3791

DRL, TD3 agent 0.0002 0.5929 0.3285 0.6661

The results presented in this table are based on previously published papers that have investigated the

performance of various control strategies in similar systems as presented in[22].

Table 2 Performance Evaluation Compared To Other Controllers In The Literature.

S. No. Author/Year Algorithm TS(sec) % O.S

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Proposed

Hassan, M. A. M., et al. (2013).

Hassan, M. A. M., et al. (2014).

Hassan, M. A. M., et al. (2014).

Gupta, T., et al. (2017)

Yegireddy/2015

Aberbour/2015

Kumar/2015

Sahu/2012

Panda/2012

Rahimian/2011

DRL, TD3 agent

GA Tuned PID

Modified GA

PSO

FLC

NSGA-II

PSO

GSA

PSA

MOL

PSO

0.5929

1.3

1.22

0.926

4

4.402

4.966

6.1

5.697

5.328

5

0.6661

0.3

7.82

5.95

0

23.6

20.9

14.9

13.9

15.8

16.8

The results of this study suggest that the DRL approach utilizing the TD3 agent outperformed the other

controllers tested, including the PSO-based PID AVR controller and the neural network-based AVR controller.

The DRL approach exhibited the best time response, indicating that it was the most effective at regulating the

AVR system.

This finding is consistent with previous research in the field of process control, which has demonstrated the

effectiveness of DRL approaches in a variety of applications. The ability of DRL to learn and adapt in real-time

through trial and error makes it particularly well-suited for complex control problems, such as those encountered

in power systems.

The superior performance of the DRL approach may be attributed to several factors. Firstly, the TD3 agent

was able to learn optimal control policies through interactions with the AVR system, allowing it to adapt to

changing conditions and disturbances. Secondly, the use of a neural network-based function approximator

enabled the agent to generalize its learned policies to unseen states, improving its robustness and reducing the

risk of overfitting. Finally, the incorporation of a replay buffer and target networks further enhanced the stability

and convergence of the TD3 algorithm.

Overall, the results of this study demonstrate the potential of DRL approaches in process control

applications, particularly in the area of power systems. Future research could investigate the application of DRL

in other control problems, as well as the development of hybrid control strategies that combine the strengths of

multiple control algorithms.

5. Conclusion

In conclusion, our study highlights the potential of DRL for process control applications, specifically for

the AVR system. The results demonstrate that DRL is a powerful approach for optimizing control actions and

achieving better system performance. With further research and development, DRL could become a widely

adopted tool for process control in various industries. It could be suggested to investigate following future work

as follows:

Information Fusion Research (2023) Volume 1 Issue 1 16 / 17

Using DRL to optimize parameters of Fractional PID; Using exponential reward function that has terms

decay with time; Going in depth for the optimization of DRL hyper parameters

Conflict of Interest

The authors declare no conflict of interest.

References

1. Chatterjee, V. Mukherjee, and S. P. Ghoshal, Velocity relaxed and craziness-based swarm optimized

intelligent PID and PSS controlled AVR system, International Journal of Electrical Power & Energy

Systems, Vol. 31, No. 7–8, pp. 323–333, 2009.

2. M. R. ESTAKHROUIEH and A. L. I. A. GHARAVEISI, Optimal iterative learning control design for

generator voltage regulation system, Turkish Journal of Electrical Engineering and Computer Sciences, Vol.

21, No. 7, pp. 1909–1919, 2013.

3. G. Bal, O. Kaplan, and S. S. Yalcin, Artificial neural network based automatic voltage regulator for a stand-

alone synchronous generator, in 2019 8th International Conference on Renewable Energy Research and

Applications (ICRERA), IEEE, pp. 1032–1037, 2019.

4. Tripathi, R. L. Verma, and M. S. Alam, Design of Ziegler Nichols tuning controller for AVR System,

International Journal of Research in Electronics & Communication Technology, Vol. 1, No. 2, pp. 154–158,

2013.

5. S. F. M. Khedr, M. E. Ammar, and M. A. M. Hassan, Multi objective genetic algorithm controller’s tuning

for non-linear automatic voltage regulator, in 2013 International Conference on Control, Decision and

Information Technologies (CoDIT), IEEE, pp. 857–863, 2013.

6. Z.-L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system,

IEEE Transactions on Energy Conversion, Vol. 19, No. 2, pp. 384–391, 2004.

7. P. Memon, A. S. Memon, A. A. Akhund, and R. H. Memon, Multilayer perceptrons neural network

automatic voltage regulator with applicability and improvement in power system transient stability,

International Journal of Emerging Trends in Electrical and Electronics (IJETEE ISSN: 2320-9569), IRET

publication, Vol. 9, No. 1, pp. 30–38, 2013.

8. A. Bhutto, F. A. Chachar, M. Hussain, D. K. Bhutto, and S. E. Bakhsh, Implementation of probabilistic

neural network (PNN) based automatic voltage regulator (AVR) for excitation control system in Matlab, in

2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),

IEEE, pp. 1–5, 2019.

9. R. Meléndez-Pérez, F. Ortiz-Rodríguez, and D. Ruiz-Vega, Design of an ANFIS Automatic Voltage

Regulator of a Synchronous Generator, in 2020 IEEE International Autumn Meeting on Power, Electronics

and Computing (ROPEC), IEEE, pp. 1–6, 2020.

10. M. L. Amer, H. H. Hassan, and H. M. Youssef, Modified evolutionary particle swarm optimization for AVR-

PID tuning, in Communications and Information Technology, Systems and Signals 2008, pp. 164–173, 2008.

11. K. Yavarian, F. Hashemi, and A. Mohammadian, Design of intelligent PID controller for AVR system using

an adaptive neuro fuzzy inference system, International Journal of Electrical and Computer Engineering

(IJECE), Vol. 4, No. 5, pp. 703–718, 2014.

12. T. Gupta and D. K. Sambariya, Optimal design of fuzzy logic controller for automatic voltage regulator, in

2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC),

IEEE, pp. 1–6, 2017.

13. M. I. Solihin, L. F. Tack, and M. L. Kean, Tuning of PID controller using particle swarm optimization (PSO),

in Proceeding of the International Conference on Advanced Science, Engineering and Information

Technology, pp. 458–461, 2011.

14. N. K. Bahgaat and M. A. Moustafa Hassan, Swarm intelligence PID controller tuning for AVR system,

Advances in Chaos Theory and Intelligent Control, pp. 791–804, 2016.

15. P. Engelbrecht, Computational Intelligence: An Introduction. John Wiley & Sons, 2007.

Information Fusion Research (2023) Volume 1 Issue 1 17 / 17

16. T. J. Stray, Application of deep reinforcement learning for control problems, NTNU, 2019.

17. L. N. Magangane and K. A. Folly, Neural networks for designing an automatic voltage regulator of a

synchronous generator, in 2013 Africon, IEEE, pp. 1–5, 2013.

18. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 2018.

19. Welcome to Spinning Up in Deep RL!-Spinning Up documentation.

https://spinningup.openai.com/en/latest/ (accessed Jan. 26, 2023).

20. T. P. Lillicrap et al., Continuous control with deep reinforcement learning, arXiv preprint arXiv:1509.02971,

2015.

21. S. Fujimoto, H. Hoof, and D. Meger, Addressing function approximation error in actor-critic methods, in

International Conference on Machine Learning, PMLR, pp. 1587–1596, 2018.

22. S. Priyambada, B. K. Sahu, and P. K. Mohanty, Fuzzy-PID controller optimized TLBO approach on

automatic voltage regulator, in 2015 International Conference on Energy, Power and Environment: Towards

Sustainable Growth (ICEPE), IEEE, pp. 1–6, 2015.

