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Abstract: This paper presents a novel approach to enhance the performance of Automatic Voltage Regulator 

(AVR) systems in power systems using Deep Reinforcement Learning (DRL). The AVR plays a critical role in 

maintaining voltage stability and ensuring reliable power delivery. However, conventional control strategies, 

such as PID controllers, have limitations in handling complex and nonlinear power system dynamics. In this 

study, the application of DRL techniques is explored, particularly the Twin-Delayed Deep Deterministic Policy 

Gradient (TD3) algorithm, to AVR control. This algorithm offers the advantage of handling continuous action 

spaces and enable the controller to learn optimal control policies directly from the system's state information. 

The results show that the DRL approach outperforms the traditional PID and Neural Network-based control 

approaches, with the shortest time response and the best voltage regulation performance. The use of DRL in 

AVR system control shows promising potential for improving the efficiency and accuracy of power system 

control. This research provides insights into the advantages of DRL for process control and highlights its 

potential for future applications in power system control. 

Keywords: Deep reinforcement learning, Process control, AVR system, TD3 agent, PID controller, Neural 

network controller, Optimization, Artificial intelligence. 

  

1. Introduction 

Ensuring a stable terminal voltage and frequency is crucial for maintaining a reliable power system that can 

meet the needs of all its users. Voltage stability is a critical issue that greatly impacts the reliability of power 

systems, and has been the subject of extensive research over the years. By adjusting the excitation current, it is 

possible to regulate both the generator terminal voltage and the amount of reactive power supplied to the grid. 

The stability of the power system is critically dependent on the synchronous generator's excitation mechanism. 

AVR is a closed-loop control system made to regulate the synchronous generator's terminal voltage and maintain 

it within specified limit ranges[1]. 

While new algorithms have been proposed for regulating synchronous generator’s terminal voltage, many 

industrial systems still rely on the conventional Proportional-Integral-Derivative (PID) based AVR design due to 

its simplicity and ease of implementation[2]. Conventional PID controllers have certain drawbacks. Firstly, they 

require full knowledge of the system, which is a difficult task to achieve. Additionally, they are linear controllers 

which makes them unsuitable for nonlinear systems that are prevalent in real-world applications.  

Nonlinear control techniques have gained popularity in recent years and are continuously evolving. These 

techniques have been demonstrated to be more efficient in ensuring stability in power systems. Artificial Neural   
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Networks (ANNs) are one such nonlinear approach that can be particularly useful for modeling complex, 

dynamic power systems. ANNs with their nonlinear structure are well-suited for modeling systems that are 

challenging to represent mathematically. Moreover, ANNs' capability as universal function approximators 

enables them to accurately approximate any continuous nonlinear function with arbitrary precision[3]. 

In this paper, conventional PID based AVR controller will be developed where PID parameters will be 

optimized using Particle Swarm Optimization (PSO) till satisfactory response is achieved then several input and 

output patterns will be compiled and stored as data which will be used to train the proposed AVR controllers, 

ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS), in MATLAB/Simulink environment. Model free 

DLR will be introduced then finally results will be compared. 

2. Related Work 

While PID-based controllers are commonly used for AVR, their tuning process is manual and can result in 

suboptimal performance. Various optimization techniques, such as Ziegler Nichols (ZN), Genetic Algorithms 

(GA) and PSO, have been proposed to enhance PID tuning, but they still have limitations in dealing with 

nonlinearities and uncertainties. 

ZN method has been widely employed for tuning controllers in the past, as evidenced by[4]. However, this 

method has limitations in terms of ensuring optimal performance, as its efficacy is primarily dependent on the 

complexity and order of the plant. Both GA and PSO are advanced techniques that are often utilized to improve 

PID tuning. The study in[5] employed both ZN and GA for PID tuning, with GA exhibiting better performance 

over ZN. The study conducted in[6], introduced the use of PSO to efficiently search for the optimal PID controller 

parameters of an AVR system. 

New control system design strategies, such as ANNs and ANFIS, have been investigated and developed in 

recent decades to deal with the significant nonlinearities seen in most real control systems. In[7], it was 

demonstrated that ANNs AVR exhibited superior performance when compared to conventional PID controllers. 

In[8], Probabilistic Neural Network (PNN) based AVR controllers were implemented in MATLAB/Simulink and 

showed improved transient stability and reduced overshoot and settling time compared to conventional PID-

based controllers at various loading conditions. 

The usage of ANFIS based controller combines the advantages of both fuzzy logic and NN to achieve a 

more accurate control of the AVR system. In[9], a design procedure for ANFIS-based AVR is presented, which 

results in an improved system dynamic response when compared to conventional AVRs. 

The application of Deep Reinforcement Learning (DRL) in controlling AVR systems is a recent research 

trend, where the controller learns from interacting with the environment to achieve optimal performance. While 

still in the early stages, DRL-based AVR controllers have presented promising results and potential for further 

improvement. The use of DRL is particularly suitable for controlling AVR systems in dynamic and uncertain 

environments, where traditional control methods may struggle to adapt. Therefore, DRL has the potential to 

revolutionize the design and operation of AVR systems in the future. 

3. System Model and Proposed Techniques 

It is widely recognized in the power systems community that variations in real power demand primarily 

impact system frequency, while changes in reactive power demand mainly influence the voltage magnitude. To 

regulate the reactive power output of a generator, the most commonly employed method is to manipulate the 

generator excitation control using AVR system. 

An increase in the generator's reactive power load leads to a reduction in the magnitude of the terminal 

voltage. A potential transformer can be used for measuring the voltage magnitude on a single phase, which is 

then rectified and compared to a DC set point signal. The generated error signal is then employed to regulate the 

exciter field and raise the exciter terminal voltage. As a result, there is an increase in the generator field current, 

leading to a rise in the generated emf. Therefore, the production of reactive power is adjusted to reach a new 
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equilibrium, resulting in an increase in the terminal voltage to the desired level[10]. 

3.1 Model of an AVR System 

To simplify the comparison between different algorithms, a linearized model of the AVR system has been 

utilized for performance evaluation. AVR system is composed of four primary components: the amplifier, exciter, 

generator, and sensor. In order to establish the mathematical model and transfer function of these components, 

linearization involves considering the primary time constants and neglecting nonlinearities such as saturation [11]. 

The schematic diagram of a simplified AVR is illustrated in Figure 1. 

As presented in[12], the adopted values of an AVR system are given by: KA = 10; KE =1; KG =1; KS =1; 

TA=0.1s; TE =0.4s; TG =1s; TS =0.01s. 

3.2 PSO Based PID Controller 

PSO is an evolutionary computation technique inspired by the collective behavior of social animals such as 

birds and fish. The algorithm works by having individual particles where each moves individually and accelerates 

towards the personal best location while evaluating the fitness value of its current position. The fitness value for 

a particular position is determined through the evaluation of a fitness function at that specific location.  

 

Figure 1  Synchronous generator with AVR only. 

The fitness function is the objective function that is used to determine the optimality of a solution. The PSO 

algorithm uses the fitness function to determine the quality of the current solution and guide the particles towards 

the optimal solution. So, in the event that a particle's current position has a fitness value superior to its personal 

best, the personal best is then updated to the current position. Every particle within the swarm is aware of the 

global best, which is the location with the best fitness value for the entire swarm. As the particles move along 

their trajectory, they compare the fitness value of their Personal Best (Pbest) with that of the Global Best (gbest) 

at each point. If a particle's Pbest has a higher fitness value than the current gbest, then the gbest is updated to 

the Pbest of that particle. This allows the swarm to collectively converge towards the global optimum. Finally, 

once all particles approach the position with the best fitness value of the swarm, their movement is stopped[13,14]. 

Each particle within the swarm has its own position and velocity, (𝑋𝑖, 𝑉𝑖) which are updated as following: 

𝑣𝑖
𝑘+1 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘)                                             (Eq.1) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                                                            (Eq.2) 

Where: 

𝑣𝑖
𝑘 : Velocity of the 𝑖𝑡ℎ particle at the 𝑘𝑡ℎ  iteration. 

𝑥𝑖
𝑘 : Current position (or solution) of the ith particle at the 𝑘𝑡ℎ  iteration. 

𝑐1, 𝑐2 : Acceleration coefficients, usually are Eq. 2. 

𝑟1, 𝑟2 : Two random variables with uniform distribution between 0 and 1. 

𝑤 : Inertia weight which shows the effect of the previous velocity vector on the new vector. 

𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 : Personal best position of the 𝑖𝑡ℎ particle at the 𝑘𝑡ℎ  iteration. 

𝐺𝑏𝑒𝑠𝑡𝑘 : Global best position within the swarm at the 𝑘𝑡ℎ  iteration. 
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As presented in[14], Figure 2 describes pseudocode of PSO algorithm: 

 

Figure 2  Peseudo code of PSO Algorithm. 

In the context of tuning a PID controller using PSO, the fitness function can be designed to evaluate the 

performance of the PID controller. So, a fitness function based on dynamic performance indices, as expressed in 

Eq. 3, is utilized as follows: 

𝐽 = 𝑤1 ∗ 𝐸𝑠𝑠 + 𝑤2 ∗ %𝑂𝑆 + 𝑤3 ∗ 𝑡𝑠 + 𝑤4 ∗ 𝑡𝑟                                                   (Eq.3) 

Where: 

𝑒(𝑡) : Error signal in time domain 

%𝑂𝑆 : Overshoot Percentage 

𝑡𝑟 : Rise Time 

𝑡𝑠 : Settling Time 

𝑤1,  𝑤2,  𝑤3 : Weighting factors used to determine which performance criteria is more important.  

3.3 Artificial Neural Networks 

The human brain is a sophisticated and intricate system that operates in a nonlinear and parallel manner. 

This enables it to perform complex tasks such as pattern recognition, perception, and cognitive control at 

remarkable speeds, surpassing any current computer technology available. 

ANNs are a type of machine learning that imitates the structure of the human brain. The objective of ANNs 

is to replicate the biological mechanisms that form the basis of information processing in the human brain, such 

as pattern recognition, decision-making, and perception. ANNs consist of a network of artificial neurons that 

communicate with each other through connections, or synapses. These artificial neurons are modeled using a 

nonlinear differential function, such as a sigmoidal function. ANNs can be composed of multiple layers, 

including input, hidden, and output layers, to enable complex computations[15]. 

ANNs are commonly used in supervised learning tasks, which involves training a model to make predictions 

or classifications based on input data that is labeled with the correct output, due to their ability to approximate 

and learn complex non-linear relationships between input and output variables. The back-propagation training 

algorithm is the most commonly used training algorithm for supervised learning using ANN. In this algorithm, 

the input data is fed into the network, which processes it through a series of layers that apply a non-linear 

transformation to the input. The output is then compared to the correct output label, also known as the target 

value, and the error is backpropagated through the network to adjust the weights of the connections between the 
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neurons[16,17]. 

Algorithm 1 demonstrates the pseudo-code for the back-propagation training algorithm[23]. 

 

3.4 Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) is a subfield of machine learning that combines the principles of 

Reinforcement Learning (RL) with Deep Neural Networks (DNN). Figure 3 illustrates the fundamental elements 

of the RL framework[18]. The agent is the responsible for learning and decision-making. It interacts with the 

environment by selecting actions  𝐴𝑡 , which lead the environment to a new state 𝑆𝑡+1 . The environment 

provides feedback on performance through rewards or penalties, represented as 𝑅𝑡+1. As the agent interacts with 

the environment, It seeks to maximize the rewards which encourages good actions allowing it to learn the best 

policy. 

 

Figure 3  Building blocks of standard RL problem. 

In the field of control systems, it is common to refer to the controller being designed as the agent and to the 

system outside the controller, including the industrial process, reference signal, and other sensors, as the 

environment. The desired optimal-control behavior that the designer seeks is referred to as the policy. RL makes 

it possible to learn the desired behavior without requiring excessively detailed modeling of the system. 

The fundamental elements of RL are briefly described as follows: 

Policy: is a mechanism that defines an agent's behavior at any given time. It maps the states of the 

environment to the corresponding actions that the agent should take in those states. It is a critical component of 

an RL agent since it determines the agent's behavior. The policy can be deterministic, represented by (𝑠), or 

stochastic, represented by 𝜋(𝑎|𝑠). Where 𝜋(𝑎|𝑠) represents the probability of taking action 𝑎𝑡 = 𝑎 when the 

state 𝑠𝑡 = 𝑠. 

Algorithm 1: The back-propagation algorithm for learning in multilayer networks.[23] 

1:  function BACK-PROP-LEARNING (𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘) returns a neural 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

2:  inputs: examples, a set of examples, each with input vector 𝐱 and output vector 𝐲 

network, a multilayer network with 𝐿 layers, weights 𝑤𝑖,𝑗 , activation function 𝑔 

3:  local variables: Δ, a vector of errors, indexed by network node 

4:  repeat 

5:  for each weight 𝑤𝑖,𝑗  in 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 do 

6:  𝑤𝑖,𝑗 ← a small random number 

7:  for each example (𝐱, 𝐲 𝐣) in examples do 

8:  / * Propagate the inputs forward to compute the outputs * / 
9:  for each node 𝑖 in the input layer do 

10:  𝑎𝑖 ← 𝑥𝑖  
11:  for 𝓵 = 𝟐 to 𝑳 do 

12:  for each node 𝑗 in layer ℓ do 

13:  𝑖𝑛𝑗 ← ∑𝑖  𝑤𝑖,𝑗𝑎𝑖  

14:  𝑎𝑗 ← 𝑔 𝑖𝑛𝑗   

15:  / * Propagate deltas backward from output layer to input layer * / 

16:  for each node 𝑗 in the output layer do 

17:  Δ[𝑗] ← 𝑔′ 𝑖𝑛𝑗  ×  𝑦𝑗 − 𝑎𝑗    

18:  for ℓ = 𝐿 − 1 to 1 do 

19:  for each node 𝑖 in layer ℓ do 

20:  Δ[𝑖] ← 𝑔′ 𝑖𝑛𝑖)∑𝑗  𝑤𝑖,𝑗Δ[𝑗]  

21:  / * 𝑈𝑝𝑑𝑎𝑡𝑒 every weight in network using deltas * / 

22:  for each weight 𝑤𝑖,𝑗  in 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝐝𝐨 

23:  𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + 𝛼 × 𝑎𝑖 × Δ[𝑗] 

24:  until some stopping criterion is satisfied 

25:  return 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 
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Reward: A reward function, denoted as 𝑟𝑡, serves as a numerical signal provided to an RL agent, reflecting 

its performance in relation to its objectives. This function supplies immediate feedback from the environment 

based on the agent's actions. As the agent interacts with the environment, it receives rewards for favorable actions 

and penalties for unfavorable ones. In this way, the reward function guides the agent's decision-making policy, 

motivating it to pursue actions that lead to higher cumulative rewards over time. 

Value function: is a function that estimates the desirability of taking a specific action in a given state. While 

a reward signal gives feedback on the immediate goodness of the current action, value function provides an 

evaluation of long-term goodness based on the expected cumulative sum of discounted rewards that the agent is 

likely to receive starting from a given time step 𝑡 onwards. Where the return, denoted by 𝑅𝑡, is expressed as 

follows: 

𝑅𝑡 = ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘  ,  0 ≤  𝛾 ≤ 1.                                                     (Eq.4) 

The value function, denoted by 𝑉𝜋(𝑠), provides an estimation of the expected return for a given state 𝑠 

when the agent follows a specific policy 𝜋, 

𝑉𝜋(𝑠) = 𝔼[𝑅𝑡|𝑠𝑡 =  𝑠]                                                                  (Eq.5) 

The example, illustrated in Figure 4, demonstrates the difference between Reward and Value functions. 

Start 2 3 4 5 6 7

0 0 0 1 0 0 10

11 12 13 0 14 15 Goal

Action

Total 
Reward 
= 37

Total 
Reward 
= 65

 

Figure 4  Examples for The Difference Between Reward and Value Functions. 

Action-Value function: also referred to as the Q-function, denoted by 𝑄𝜋(𝑠, 𝑎), represents the expected 

cumulative sum of rewards the agent can expect to receive starting from state 𝑠, taking a specific action 𝑎, and 

thereafter following a specific policy 𝜋. It provides an estimate of how good it is to perform a given action in a 

given state.  

It can be expresses as follows: 

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 =  𝑠, 𝑎𝑡 =  𝑎]                                                             (Eq.6) 

Model-based and model-free RL methods: Model-based methods rely on having an accurate model of 

the environment, which provides access to a table of probabilities for being in a state given an action, as well as 

associated rewards. This allows for planning the next action and reward. In contrast, model-free methods for RL 

do not require an explicit environment model and rely solely on trial-and-error learning using sensory input[18]. 

The agent learns either a value function or a policy that enables it to make decisions without the need for 

environment simulation. However, this approach may require more data and experience to converge to an optimal 

solution. Although both methods have been extensively studied in the literature, model-free techniques have 

gained greater prevalence[19]. Therefore, this research paper will focus on model-free RL in the following sections. 

Q-learning: is a Temporal-Difference (TD) control algorithm that enables the iterative learning of Q-values 

for each state-action pair. The algorithm tracks the value of 𝑄𝜋(𝑠, 𝑎)  for every state-action pair. Upon 

performing an action, 𝑎 in a state 𝑠, the algorithm updates 𝑄𝜋(𝑠, 𝑎) using two feedback elements from the 

environment: the reward R and the subsequent state 𝑆𝑘+1, as demonstrated in Eq.7, where alpha (𝛼) represents 

the learning rate. The off-policy nature of Q-learning allows the algorithm to learn the optimal policy, even when 

following a different exploration policy. 

𝑄𝑛𝑒𝑤(𝑠𝑘 , 𝑎𝑘) = 𝑄𝑜𝑙𝑑(𝑠𝑘, 𝑎𝑘) + 𝛼 (𝑟𝑘 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑘+1, 𝑎) − 𝑄𝑜𝑙𝑑(𝑠𝑘 , 𝑎𝑘))                           (Eq.7) 
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Actor–Critic methods: The actor-critic algorithm is a popular real-time RL method that combines aspects 

of value-based and policy-based methods. It consists of two main components: the actor and the critic. The actor 

learns a policy for selecting actions, while the critic learns the value function for each state. Under a given policy, 

the actor applies an action to the environment and receives feedback, which is evaluated by the critic. The 

learning process involves two steps: first, the critic performs policy evaluation, and then the actor performs 

policy improvement. This algorithm enables continuous state and action spaces and supports online learning. Its 

success has been demonstrated in various applications such as robotics, and control systems. 

Within the field of DRL, parameterized policies are commonly employed. A parameterized policy is a policy 

that outputs a value based on a set of adjustable parameters, represented as 𝜃. These parameters can be modified 

using an optimization algorithm, resulting in changes to the policy's output. The policy that is controlled by 𝜃 

is referred to as 𝜋𝜃. Parameterized policies are frequently implemented using NN, where 𝜃 corresponds to the 

weights and biases of the network. It is important to note that in this context, the optimization algorithm aims to 

find the optimal set of parameters 𝜃 that maximizes the expected return. 

Commonly used algorithms in control systems: Applying RL in continuous control systems poses 

significant challenges, such as dealing with high-dimensional state and action spaces and ensuring stable learning. 

Recently, two algorithms have exhibited promising results in addressing these challenges: Deep Deterministic 

Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3). 

DDPG: is an off-policy actor-critic RL algorithm that extends the deterministic policy gradient algorithm 

to work with continuous action spaces. It utilizes an actor network to estimate the optimal policy and a critic 

network to approximate the Q-value function. DDPG is known for its stability and scalability in dealing with 

high-dimensional state and action spaces. 

Algorithm 2 demonstrates pseudo-code for DDPG algorithm as explained in[20].  

 

TD3: is an extension of the DDPG algorithm that uses two critics to prevent overestimation of the Q-value 

function. It also employs a target policy smoothing technique to regularize the learned policy and improve its 

stability. TD3 has been demonstrated to outperform DDPG on various continuous control tasks and is considered 

one of the state-of-the-art algorithms in this field. 

Algorithm 3 demonstrates pseudo-code for DDPG algorithm [21]. 
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4. Simulation Results and Discussion 

In this section, the simulation results and discussion will be presented for the proposed controller design for 

AVR systems using DRL. At first, the model of the AVR system is introduced, and the time response of the 

system without any controller is presented. This serves as a baseline for comparing the performance of the 

controllers were implemented in our study. The results of the PSO-based PID controller are then presented, 

including details about the experimental setup, such as the number of populations in the swarm and the objective 

function weights used for optimization. Insights into the tuning of the PSO-based PID controller are also provided, 

and its limitations in terms of performance are discussed. Subsequently, the NN-based controller is presented, 

which is implemented as a supervised learning algorithm using training data obtained from the previous 

technique. The design of the NN, including the number of layers, the number of neurons, and the chosen 

activation function, is explained. Finally, the DRL-based AVR controller is presented. Additionally, the time 

response of the AVR system under the DRL-based controller is presented and compared to the other controllers. 

In summary, a comprehensive analysis of the performance of different controllers for AVR systems is provided, 

with the strengths and limitations of each approach being highlighted. 

4.1 System Without Controller 

As a first step, AVR system response without controller is discussed using linearized model of system 

presented in Section 0.  

4.1.1 Simulink Model 

4.1.2 Terminal Voltage Response Without Controller 

Simulation result displayed in Figure , demonstrates the importance of using a controller. where the system 

response exhibits oscillatory response with a large SSE,  which is not acceptable for stable and reliable power 

systems. 

4.2 PSO Based AVR Controller 

As discussed earlier, a dynamic performance indices-based multi-objective function will be used. Where its 

weights are chosen as follows: 

𝑤1 = 0.5 ,  𝑤2 = 0.5 ,  𝑤3 = 0.5 ,  𝑤4 = 0.5 
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Figure 5  Block diagram of AVR system without controller. 

 

Figure 6  Response of AVR system without a controller. 

PSO parameters are chosen as follows: 

𝑐1 = 2, 𝑐2 = 2, 𝑟1, 𝑟2 = 𝑟𝑎𝑛𝑑(0,1), 𝑤 = 0.7 

𝑁𝑜. 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 100,𝑁𝑜. 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 = 20 

The searching space of each parameter of PID controller is chosen as follows: 

𝐾𝑃 ∈  [0.1 10 ], 𝐾𝐼 ∈  [0.1 10], 𝐾𝐷 ∈  [0.1 10] 

After running PSO, obtained PID parameters is as follows: 

𝐾𝑝 = 2.4182 𝐾𝐼 = 0.2546 𝐾𝑝 = 0.5533 

Where best cost value obtained is displayed in Figure 7: 
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Figure 7  PSO Best Cost Versus iterations. 

4.2.1 Simulink Model 

Simulink model for implementing the obtained controller’s parameters is illustrated in Figure . 

 

Figure 8  Simulation block diagram of AVR system with PID controller. 

4.2.2 Terminal Voltage Response with PSO-based PID Controller 

AVR time response using PSO-based PID is displayed in Figure  as follows:  

The results illustrated, depicts an improvement in system time response.  

Before going throw implementation of supervised learning via NN, training data sets will be generated 

utilizing the previous controller designed with PSO. 

4.3 NN based AVR Controller 

4.3.1 Training Input/Output Data 

As it is important to capture all information about the system, input data captured is error signal, integration 

of error and derivative of error. Where the output signal is the control action. Figure  describes the model used 

to generate training data. 
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Figure 9  Response of AVR system with PSO-based PID controller. 

 
Figure 10  Generating Training Data Set. 

4.3.2 NN Structure 

After obtaining Input/Output data sets needed to train NN, MATLAB NN Toolbox is used to create, 

configure and train the NN. Where four hidden layers were used, each with five neurons and tanh activation 

function. Network structure is illustrated in  

 

Figure 11  Neural Network Structure used for Supervised Learning Based AVR controller. 
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4.3.3 Simulink Model 

After training is done, NN based controller can by implemented as presented in Figure : 

 

Figure 12  AVR System with Neural Network Based Controller. 

4.3.4 Terminal Voltage Response With Controller 

As represented in Figure 13, simulation result demonstrates how much NN is good in learning system 

dynamics. Where it has a response similar to PSO-based PID with a slightly higher overshoot.  

 

Figure 13  Response of AVR system with NN supervised learning. 

4.4 DRL Based AVR Controller 

4.4.1 Simulink Model 

Since DRL incorporates different terms in the control system, such as: (reward, observation, agent, etc.), 

system model will a slightly different. Where Simulink diagram for DRL agent is represented in Figure  as 

follows: 
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Figure 14  Closed-loop control structure of AVR System incorporating DRL agent. 

4.4.2 Reward Function 

It’s important to note that reward function could be considered the main driver that pushes the system for a 

particular response, so it’s vital to properly design it. The following figure represents the reward function in 

terms of Simulink blocks: 

 

Figure 15  DRL Reward Function Formulation. 

Reward function can be mathematically expressed as illustrated in Eq.8: 

𝑟𝑡 = 𝑅1 + 𝑃1 + 𝑃2 + 𝑃3  

𝑅1 = 1,                                |𝑒| < 0.01  

𝑃1 = −300,                         𝑒 < −0.2                                                (Eq.8) 

𝑃2 = −2 × ∫ 𝑡 × |𝑒|  

𝑃3 = −500000,     𝑉𝑟𝑒𝑓 ≥ 5 || 𝑉𝑟𝑒𝑓 ≤ −5  

4.4.3 Terminal Voltage Response with Controller 

As shown in Figure , time response for AVR system incorporating DRL agent as a controller depicts a huge 

improvement in voltage regulation which seems to be the best among previously presented controllers. 

The following section will delve into the comparative evaluation of the DRL-based controller in relation to 

the controllers introduced within this paper as well as those featured in the existing literature. 



Information Fusion Research (2023) Volume 1 Issue 1                                             14 / 17 

 

 

 

Figure 16  Response of AVR system with a DRL-based controller, TD3. 

4.5 Discussion 

The following figure present performance comparison between different control techniques presented in 

this paper: 

The remarkable outcomes attained by the application of DRL in the regulation of the AVR system are 

presented in Figure . The system's response, as depicted in Figure , highlights the remarkable improvements 

realized by the DRL controller concerning time response characteristics, including settling time, overshoot, and 

steady-state error.  

The resulted time response notably exceeds those obtained from alternative controllers, such as PSO-based 

PID and supervised learning using NN, thus establishing DRL as the preferred choice for achieving optimal and 

precise control of the AVR system. 

The table presented below provides a summary of the performance metrics obtained from the simulation 

results of the AVR system. The table includes the values of steady-state error, settling time, and percentage of 

overshoot for each controller employed in this paper for the control of AVR system. 

 

Figure 17  Response of AVR system with PSO-based PID, NN supervised learning and TD3 agent. 
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Table 1  Time Response Comparison for Different Proposed Controllers. 

Controller SSE Ts(sec) Tr(sec) % O.S 

PSO-based PID 0.004 1.3162 0.2735 0 

NN supervised learning 0.0049 1.4381 0.2317 5.3791 

DRL, TD3 agent 0.0002 0.5929 0.3285 0.6661 

The results presented in this table are based on previously published papers that have investigated the 

performance of various control strategies in similar systems as presented in[22]. 

Table 2  Performance Evaluation Compared To Other Controllers In The Literature. 

S. No. Author/Year Algorithm TS(sec) % O.S 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Proposed 

Hassan, M. A. M., et al. (2013). 

Hassan, M. A. M., et al. (2014). 

Hassan, M. A. M., et al. (2014). 

Gupta, T., et al. (2017) 

Yegireddy/2015 

Aberbour/2015 

Kumar/2015 

Sahu/2012 

Panda/2012 

Rahimian/2011 

DRL, TD3 agent 

GA Tuned PID 

Modified GA 

PSO 

FLC 

NSGA-II 

PSO 

GSA 

PSA 

MOL 

PSO 

0.5929 

1.3 

1.22 

0.926 

4 

4.402 

4.966 

6.1 

5.697 

5.328 

5 

0.6661 

0.3 

7.82 

5.95 

0 

23.6 

20.9 

14.9 

13.9 

15.8 

16.8 

The results of this study suggest that the DRL approach utilizing the TD3 agent outperformed the other 

controllers tested, including the PSO-based PID AVR controller and the neural network-based AVR controller. 

The DRL approach exhibited the best time response, indicating that it was the most effective at regulating the 

AVR system. 

This finding is consistent with previous research in the field of process control, which has demonstrated the 

effectiveness of DRL approaches in a variety of applications. The ability of DRL to learn and adapt in real-time 

through trial and error makes it particularly well-suited for complex control problems, such as those encountered 

in power systems. 

The superior performance of the DRL approach may be attributed to several factors. Firstly, the TD3 agent 

was able to learn optimal control policies through interactions with the AVR system, allowing it to adapt to 

changing conditions and disturbances. Secondly, the use of a neural network-based function approximator 

enabled the agent to generalize its learned policies to unseen states, improving its robustness and reducing the 

risk of overfitting. Finally, the incorporation of a replay buffer and target networks further enhanced the stability 

and convergence of the TD3 algorithm. 

Overall, the results of this study demonstrate the potential of DRL approaches in process control 

applications, particularly in the area of power systems. Future research could investigate the application of DRL 

in other control problems, as well as the development of hybrid control strategies that combine the strengths of 

multiple control algorithms. 

5. Conclusion 

In conclusion, our study highlights the potential of DRL for process control applications, specifically for 

the AVR system. The results demonstrate that DRL is a powerful approach for optimizing control actions and 

achieving better system performance. With further research and development, DRL could become a widely 

adopted tool for process control in various industries. It could be suggested to investigate following future work 

as follows: 
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Using DRL to optimize parameters of Fractional PID; Using exponential reward function that has terms 

decay with time; Going in depth for the optimization of DRL hyper parameters 
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