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Abstract: Last years, the implementation of reverse loops in logistics and the deployment of industrial symbiosis 

becomes more important. However, these new activities management isn’t easy and it’s necessary to propose 

methodologies to facilitate the actors work. However, the existing studies are more at strategic level, aiming with 

implementation or cooperation. At the tactical/operational level, solutions are poorly effective and/or expensive. 

Our work targets an optimal production policy definition based on the base stock strategy adapted for an 

industrial symbiosis. The system is composed of two kinds of warehouses and three types of enterprises. The 

recovering depends on the kind of collected used finished products. All demands are uncertain such as the 

number of collected used finished products and generated waste. Then, the main objective is to minimize the 

sum of all economic, environmental and social costs by identifying the level of the base stocks. To do this, an 

infinitesimal perturbation analysis study is conducted to evaluate the gradient estimators of the objective function 

subject to an echelon base stock production policy. This result is then used in a simulation based-optimization 

algorithm to determine these stock levels and highlight our theoretical results by comparing with other 

replenishment strategy and mathematical programming. 

Keywords: Inventory control, production planning and scheduling, industrial symbiosis, echelon base stock 

policy, stochastic fluid model, infinitesimal perturbation analysis. 

1. Introduction 

Since the publication of the last IPCC reports (see http://ipcc.ch), it appears crucial to change the paradigm 

and propose new solutions within a sustainable development framework to limit our impact on the environment 

but also on society[1]. To achieve this, an idea is to adopt strategies inspired by nature[2]. The principle is to 

emulates nature’s designs, processes and organization, and reconnect anthropic activities to define sustainable 

solutions[3]. Many strategies have been proposed[4], and among all the done works, a particular interest lies in 

logistic flows with two directions. The first one concerns the incorporation of environmental (and sometimes) 

social aspects. In this case, authors talk about sustainable or green systems and they develop strategies for 

respectful sourcing and distribution of materials[5]. The second direction concerns the integration of end-of-life 

products. In this last case, authors talk about circular economy with mainly reverse logistics[6] and 

reusing/recovering activities[7]. For this present work, we consider the symbiotic and reverse flows between 

actors. The benefits of reverse logistics are well documented[8] but they are difficult to implement and manage 

because of collection and recovery activities, reuse without any modification or remanufacturing due to 

uncertainties (quality and quantity or collected products, time of the return for these products[7,9]). For symbiotic 

flows, the advantages are more related to society even if, economic and environmental impacts also appear[10].  

The principle of symbiotic flows comes from the definition of biological symbiosis, which namely refers 

to a close, long-term interaction between different species. The concept of industrial symbiosis (IS) is  

http://ipcc.ch/
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defined[11] as an industrial system that “in addition to minimizing waste production in processes, would maximize 

the economical use of waste materials and of products at the ends of their lives as inputs to other processes and 

industries”. The first full realization of an IS has been located in Kalundborg in Denmark to reduce costs and 

lessen environmental impact on the community[12]. Since the effective implementation of the 50-year-old 

Kalundborg project, the researches on industrial symbiosis have exploded[13]. However, few works consider the 

operational level like replenishment and scheduling activities[14].  

In this work, we focus on a simple IS between three types of companies with symbiotic and reverse flows 

between them. The flows analysed could be easily extended to more firms without loss of information. The 

considered flows include a direct market, a reverse logistic and a second-hand market, which will be feed after 

no or few modifications on returned products. The symbiotic and reverse flows are established, but we do not 

consider times (lead, transportation, collection, filing, etc). The objective of the paper is to define the 

replenishment of inventories (for all products and waste) based on an echelon base stock strategy. This work is 

an extension of the work presented by Hennequin et al.[15] by considering stochastic and continuous flows, known 

as the stochastic fluid model. This model offers an interesting way to reduce the complexity inherent to discrete 

models by approximating the discrete material flows with continuous material flows[16]. In the base stock strategy, 

when a demand appears, the information is forwarded to all stages simultaneously[17].  

The objective will be to find the base stocks (or order-up-to-level) that minimize the long run expected 

average total cost during the time horizon. This cost is composed by economic, environmental and social impacts 

for both manufacturing/remanufacturing products and waste. To find directly the sample derivative of this cost 

function in function of the base stock levels, we will derive information coming from a nominal trajectory 

compared with a perturbated trajectory (with a very small perturbation). The basic idea is that a single experiment 

could contain much more information about the system than conventional simulations utilize in their output 

analysis, including gradients. This sample path gradient estimation and optimization is known as the infinitesimal 

perturbation analysis (IPA) technique. IPA were first developed for study of discrete event dynamic systems 

throughput optimization[18]. Since then, the technique has been widely used for transfer lines and buffer strategies 

but also for telecommunication networks[19]. 

The paper is organized as follows. In the following section, we will study the related literature to outline 

the importance of developing new strategies within a sustainable framework while ensuring effective results. In 

the third section, the system under consideration is presented as well as the different considered material flows. 

In the fourth section, the definition of the objective function is given. In the fifth section, an infinitesimal 

perturbation analysis is conducted to compute the sensitivity of chosen performance measure, the echelon base 

stock policy, with respect to the system parameters and propose gradient estimators with respect to minimal total 

cost by a single simulation run. Then, we conduct a numerical application to estimate the base stock levels. The 

results are compared with other production policiy and with mathematical programming (with a discrete 

approach). Finally, we present conclusions and future developments related to our work. 

2. Related literature and work positioning 

Since the publication by the United Nations of “Our common future” report[20], many governments in the 

world have adopted strategies to strongly encourage individuals and companies to reduce their environmental 

and social impacts[24]. The sustainability concept, a very long-term notion, has been simplified and transcribed 

by the fact of acting essentially on three pillars: economy, environment and society[25]. However, generally, the 

sustainability debate focuses on reducing costs while minimizing environmental impacts, mainly a reduction in 

emissions of greenhouse gases[23], energy consumption and pollutants[4]. Social aspects of sustainability have 

primarily been discussed in terms of being a cause for, or possibly a solution to, environmental problems, rather 

than something that deserves attention as a sustainability component in its own right[24]. However, the social 
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aspects of sustainability are increasingly being recognised as important, and a vast amount of literature discussing 

social sustainability has emerged within different fields such as sociology, ecology, finance, etc.  

To limit their impacts on environment and society, companies need to optimize their operations decisions 

in sourcing, production, transportation, inventory, distribution etc. [25]. These strategies should aim to steer the 

planning process towards sustainable development over the entire life cycle of the products/services offered, via 

a set of objectives taken. More precisely, firms should develop new technologies, processes and management 

strategies, products and services to ensure economic profits while minimizing their negative impacts[26]. Among 

the different developments proposed, the optimal management of flows (materials, energy as well as information 

flows) can be an interesting way to act, allowing to get closer to nature[14]. From the different methods developed, 

reverse logistics flows (such as product returns after use) as well as flows that are part of an industrial symbiosis 

(named in this work as symbiotic logistics flows) seem to be efficient methods that also allow different actors in 

the supply chain (producers, consumers and suppliers) to work together (see Figure 1). It also permits limiting 

the amount of material used and stored (inside the manufacturing processes and the inventory levels in the 

different echelons).  

 

Figure 1  Logistics flows of materials and energy. 

The number of publications concerning reverse flows are currently close to 1500 references during one 

month (main publishers of referenced journals, and almost 210 for only Taylor and Francis). For industrial 

symbiosis (IS) and symbiotic flows, the number of studies is lower (about 500 in one-month main publishers of 

referenced journals, and 50 in Taylor and Francis). In general, studies on IS are more concerned with its strategic 

or tactical implementation, with a study of the flows and interactions between actors, the network making up the 

IS and the ecopark[14]. For reverse flows, the studies could be dedicated to all part of business strategy and 

efficient management of upstream and downstream industrial processes[27], at strategic, tactical but also 

operational levels. However, for each flow, the recovery, sorting and sometimes the return in good condition or 

in a condition that is usable by the customer (second hand market or company requiring raw materials) is 

necessary. Recovery and sorting activities depends on the kind of collected waste and products. 

However, to the best of our knowledge, there is no study on a common strategy. Based on this observation, 

we propose in this work to study these activities of material recovery, which can include water, and energy, from 

the point of view of producers. We then seek to define a production policy that considers the 3 pillars of 

sustainable development, i.e. economic (mainly production and inventory costs), environmental (carbon 

emissions) and social (hardship cost and employability benefits). This production policy will be based on 

inventory levels to minimize if possible the quantity of stored materials because in practice these are the most 

commonly policies[28]. The main problem concerning inventory control and production planning concerns 

information about the due date and the quantity of demands[29]. The chosen replenishment policy is the well-

known base-stock policy will allow us to control the global flow of the symbiotic and reverse logistics flows 

based on the customers’ demand information[17]. In this policy, a nominal inventory is associated with each stage. 

The objective is then to keep the inventory position of each stage equal to the level of its nominal inventory level. 

Furthermore, the base stock policy is appealingly simple to define and use, and it has been proven that it is 
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optimal for systems without lead times[30] and suboptimal for different types of lead time and specificities[17]. 

The dynamic nature of the requirements and collection of finished products and waste generated for our 

considered system makes the solution procedure more complex in terms of computational effort. Furthermore, 

manufacturing and logistics activities may be difficult to study since the parameters cannot be easily obtained 

due to random influence and uncertainties.   

Various uncertainties could be considered for symbiotic and reverse flows coming from the random flows 

of returns (quantity but also quality since value decay could play an important part in decision-making) to the 

demands (finished and second-hand finished products), with possible disruptions throughout the supply, 

manufacturing/remanufacturing and distribution processes[31]. We do not consider lead times, delivery times, etc., 

but delays may also occur on each stage and during transport. To simplify the analysis and the definition of 

strategies, some assumptions are commonly made to limit complexity and facilitate the decision-making. For the 

random reverse flows, generally researchers consider that the quantity of returned finished products is 

independent of sales. Indeed, real data are hard to collect, and the first steps towards reverse logistics flows are 

recent, dating back to 2004 with Dell. The quality of returns is often variable, depending not only on the type of 

product, but also on its use, and therefore on the type of customer[32]. Since then, an often-used hypothesis is that 

the process is memoryless and finite. In any case, quality is difficult to estimate[33], and in this case fuzzy 

approaches may be of interest. But whatever the model defined to take this type of uncertainty into account, not 

all collected products can be refurbished or resold without further processing. It has to be noticed that some 

studies have focused on finished products return after use, but usually in an end-of-life and closed loop context[34]. 

Concerning the demands, such as for the quantity of returned products, the need for second-hand products is 

difficult to define due to a lack of data and tractability. Some assumptions linked with irreducibility in case of 

queuing networks and finite Markov chains or processes could be defined. Whatever made assumptions, it is 

clear that the costs of managing returns depends on the models used[35]. 

Since for reverse and symbiotic flows, uncertainties have significant impacts on 

manufacturing/remanufacturing activities, forecasting of return rates, and inventory management[36-38], the choice 

of a resolution method could be crucial and could affect the obtained results. Generally, at an operational level 

(more specifically for reverse flows since few works have been done for symbiotic flows), researchers define 

mathematical models coupled with simulation schemes to evaluate the behaviour of the entire system and to 

derive strategies[39]. The mathematical formulation depends on the desired objectives and performances. For our 

case, the main existing works concern mathematical programming[40], lot sizing approaches[41] and multi-criteria 

decision making[42] with for each of them different kinds of considered uncertainties linked with parameters and 

variables and/or resolution methods including fuzzy tools[38]. However, the proposed models do not always 

integrate dynamical aspects and could not solve large-scale problems. From a sensitivity approach, to optimize 

these kinds of problems with uncertainties, the basic idea is to learn how to take decisions by observing and 

analysing the current behaviour of the system. Since the parameters in the modelled system represent quantities 

that can suffer from small errors, it is natural to analyse how the performance measures are affected by small 

changes in the parameters. Indeed, the effect of any change in the structure or parameters of a system can be 

decomposed into the effects of many jumps among states (or many perturbations). We then talk about 

perturbation analysis[43]. When an infinitesimally small perturbation is applied to a parameter, the order of 

occurrence of events is not changed. The method is known as the infinitesimal perturbation analysis (IPA) and 

allows to estimate the gradients of a stochastic variable on function of parameters of interest and can be used in 

stochastic optimization algorithms to determine the optimal parameter setting. In most cases, it can be shown 

that if the performance measure is continuous, the estimate of this performance measure is unbiased. In other 

words, the unbiasedness of this estimator corresponds to saying that between the nominal and perturbed 

trajectories of the performance measure no significant deviation (or bias) occurs. This means that when the 

derivative of the performance measure is estimated over a sufficiently long-time horizon, it can be approximated 
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to the expected value of the performance measure. The conditions impartiality and convergence of the gradients 

are then obtained and can be applied to determined gradient estimators and thus used in an optimization algorithm. 

The main advantage is then to be able to compute optimal values without the help of all information and without 

long computation times. When the two conditions of impartiality and convergence can no longer be verified, 

other methods of perturbation analysis must be developed[44]. Initially developed for queuing networks[43], IPA 

has been applied for Markov processes. Suri and Fu[45] optimized the throughput of transfer lines and found 

gradient estimators with respect to maximal production rates for a general stochastic Markovian process. A 

different application[46] of this method has been studied with the determination of the gradients of the 

performance measures with respect to the production control parameters (case of the separation point). The 

dynamics of the system was represented by a stochastic fluid model[47] which allowed the authors to find the 

optimal parameters without using a detailed discrete event model. Indeed, the application of the IPA method to 

stochastic fluid models has been shown to produce better estimators for control and optimization than for 

performance evaluation, since it is possible to accurately determine the optimal parameters[48]. Woerner et al. [49] 

study the joint optimization of capacity and safety stock allocation in assembly systems with base-stock policies 

and periodic review by introducing a set of convex approximations. They then analytically compute sample path 

derivatives via infinitesimal perturbation analysis. In this paper, we apply the IPA technique to estimate the 

optimal level of base stocks for an industrial symbiosis system with reverse and symbiotic flows. The base stock 

levels are defined for finished products, for second-hand market and resale of waste. 

In what follows, we present in details our considered system, we give the notations and the dynamics of the 

system based on stochastic fluid model and chosen policy. 

3. Problem description 

In this work, we do not consider a complete IS composed of various stakeholders and flows/interactions 

between them, but only the link between two companies to highlight the principle of operational symbiotic flow. 

The first one is the main company for which the production strategy, linked to the level of stocks, must be 

dimensioned. This company generates also waste that can be reused as input material for another company. 

Similarly, for reverse logistics flows, we consider two types of customers, a direct customer of the main 

company consuming finished products. After use, this customer will return the used finished products via a 

collection system not detailed in this work. The used finished products can then be sorted and, depending on 

their condition, they will be resold to a second customer (representing a second-hand market) or returned to the 

main company's plant to be refurbished and marketed either as remanufactured products (considered as new) or 

as reconditioned products to the "second-hand" customer. The final objective is not to clearly identify and 

quantify all elements and parameters of the system under consideration but only to study and quantify the 

replenishment policy in order to reduce costs considering internalized environment and social impacts. Our study 

is like a zoom of the system focusing on the main company (see Figure 2). Indeed, for each environmental impact, 

we can define an associated cost (e.g. for greenhouse gas emissions a tax and/or penalty can be defined, for waste 

generated a cost directly linked to this waste can be defined, etc.). Similarly, for societal impacts, costs can be 

defined (e.g. the creation of new jobs with lower production costs because subsidies can be granted, etc.). 

This study could be easily generalized to different finished products and waste, and more customers and 

other companies since the chosen model help us to consider flows and not quantities of products. However, if 

we add more waste and consumers, we should also add more constraints (and not only capacity constraints) and 

the number of variables will be huge which will complexify the simulation. 

In this paper, we consider a continuous stochastic fluid model (SFM) to describe the overall dynamics of 

the system. The SFM will allow us to capture the main dynamics by accurately approximating this system which 

is in essence stochastic since different hazards can occur. The interest of using SFM is that it could easily 
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integrate delays[50] and then integrate lead times, variability and uncertainties on lead times (not done in this 

work). 

 

Figure 2  Considered system. 

The main company is named PP. It produces the finished products denoted FP in two different 

manufacturing lines: LFP which produces finished products and L’FP which remanufactures the collected used 

finished products. The finished products are stored in a finished products warehouse (denoted XFP) of the main 

company PP. The finished products are consumed by the customer CFP. After use, these finished products are 

returned and stored in a dedicated warehouse, the wasted finished products warehouse XWFP. It has to be noticed 

that for simplification we only consider the used finished products, denoted WFP coming from CFP. The customer 

of finished products CFP has an uncertain demand denoted as dFP(t). This uncertain demand of finished products 

is supposed to be independent from the symbiotic and reverse flows. In reality, the creation of a second-hand 

market can impact the initial demand of finished products, but this is not always the case. For example, in luxury 

industry -watches, or haute couture clothes, etc.- the customers of finished products are really different from the 

second-hand market. The reverse flow of used finished products obtained by the collection system is given by 

rWFP(t) with rWFP(t) ≤ dFP(t), rWFP(t) (also uncertain). We suppose that this demand is also independent from the 

first one (for the same reason). In warehouse XWFP, wasted finished products are sorted into three categories:  

 products that are no longer usable and are sent to a disposal stage -valorisation, recycle or landfill- with 

a flow equals to βdisp. rWFP(t),  

 products that are reusable as is for a second-hand market represented by the customer CWFP with a flow 

equals to βreusable. rWFP(t), 

 products that need to be reconditioned and send back to the main company with a flow equals to βremanuf. 

rWFP(t). After reconditioning, these products could be sold to CWFP (the second-hand market) or 

remanufactured if their condition allows it and could be sold to CFP. Indeed, in function of their state 

after use by customer CFP, these products could be remanufactured to an “as good as new” state or 

repackaged. In the case of remanufacturing to an “as good as new” state, we assume that the production 

of finished products of line L’WFP is lower than that of line LFP (due to losses and resales). Therefore, 

we define the finished product output of line L’WFP as a percentage (defined as α’FP) of the production 

rate of line LFP. The production speed of line LFP is equal to uFP(t) and the production speed of line LWFP 

is equal to uWFP(t). 
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When the main producer PP manufactures, it also generates waste which could be heat, water and material. 

In this paper for lake of simplicity, we consider that the flow of generated waste is equal to βW.( uFP(t)+ uWFP(t)) 

with βW≤1.This waste is stored in a warehouse denoted XW. This waste could be sold to the customer CW and 

corresponds to the symbiotic flow. The demand of this customer is also uncertain and given by dW(t). Concerning 

symbiotic flows, the demand is clearly independent from the demand of finished products since the market 

(products and costumers) is totally different. 

The notation variables are given in Table 1. The parameters (costs and percentages) will be given in Table 

2, in section 4. 

Table 1  Variables of the considered system. 

PP Main producer 

LFP Production line of finished products 

uFP(t) Production speed at time t of line LFP 

UFP Maximum production speed of line LFP 

SUFP(t) 

State at time t of the line LFP: 

{
1 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒

0 𝑒𝑙𝑠𝑒
 

L’WFP 
Remanufacturing line of used finished products with 2 options: remanufacting to a “Good as 

new” state or repackaging for the 2nd-hand market 

u’FP(t) Production speed in case of remanufacturing at time t of line L’WFP 

U’FP Maximum production speed for remanufacturing activities of line L’WFP 

u’WFP(t) Production speed in case of repackaging at time t of line L’WFP 

U’WFP Maximum production speed for repackaging activities of line L’WFP 

SU’WFP(t) 

State at time t of the line L’WFP: 

{
1 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑎𝑏𝑙𝑒 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒

0 𝑒𝑙𝑠𝑒
 

βW(t) Waste recovery level with 0≤βW(t)≤ βWmax 

βWmax Maximum level of waste generated by the main company in the 2 considered lines considered 

βlosses(t) 
Losses (sent to the disposal stage) generated during the production and the sorting by the main 

company PP 

XFP Warehouse of finished products 

xFP(t) Inventory level at time t of finished products 

BFP Base-stock leve lof warehouse XFP 

dFP(t) Demand at time t of the customer CFP 

XWFP Warehouse of used finished products 

xWFP(t) Inventory level at time t of used finished products 

BWFP Base-stock leve lof warehouse XWFP 

dWFP(t) Demand at time t of the customer CWFP 

rWFP(t) Flow of returned used finished products at time t from the customer CFP to the warehouse XWFP 

XW Warehouse of waste 

xW(t) Inventory level at time t of waste 

BW Base-stock leve lof warehouse XW 

dW(t) Demand at time t of the customer CW 

Then, the inventory level of finished products, denoted xFP(t), is given by: 

(𝑡) = ∫ [𝑢𝐹𝑃(𝑠) + 𝑢′𝐹𝑃(𝑠) − 𝑑𝐹𝑃(𝑠)
𝑡

0
]. 𝑑𝑠                                       (Eq.1) 

The inventory level of used finished products, denoted xWFP(t), is given by: 
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𝑥𝑊𝐹𝑃(𝑡) = ∫ [𝑢
′
𝑊𝐹𝑃(𝑠) + 𝑟𝑊𝐹𝑃(𝑠)

𝑡

0
) − 𝑑𝑊𝐹𝑃(𝑠)]. 𝑑𝑠                             (Eq.2) 

The inventory level of waste, denoted xW(t), is given by: 

𝑥𝑊(𝑡) = ∫ [𝛽𝑊(𝑡). (1 − 𝛽𝑊𝑙𝑜𝑠𝑠𝑒𝑠) − 𝑑𝑊(𝑠)
𝑡

0
]. 𝑑𝑠                                 (Eq.3) 

The total losses are then given at time t by: 𝛽𝑙𝑜𝑠𝑠𝑒𝑠(𝑡) = 𝛽𝑊𝑙𝑜𝑠𝑠𝑒𝑠 . 𝛽𝑊(𝑡) + 𝛽𝑑𝑖𝑠𝑝. 𝑟𝑊𝐹𝑃(𝑡). 

For the used and collected finished products, the flows are given by: 

𝑟𝑊𝐹𝑃(𝑡 + 𝜏′) = 𝛽𝑟𝑒𝑚𝑎𝑛𝑢𝑓 . 𝑟𝑊𝐹𝑃(𝑡) + 𝛽𝑟𝑒𝑢𝑠𝑎𝑏𝑙𝑒 . 𝑟𝑊𝐹𝑃(𝑡) + 𝛽𝑑𝑖𝑠𝑝 . 𝑟𝑊𝐹𝑃(𝑡) 

The production strategy is based on a base stock echelon policy which means that all actors have the same 

information concerning the demands and that the level of inventories are limited by the base stock level for each 

considered warehouse. It is a pull control policy that triggers manufacturing orders in response to the arrival of 

demands. The production policy depends of the fact that it is necessary to produce and that the line can produce 

or not (because of possible disruptions, failures). The uncertainties in this case are represented by a memoryless 

model. This means that if ever production stops during manufacturing, the products must be resumed from the 

start (case of the chemical industry for example). For this replenishment policy, we define the base stock level 

in the finished products warehouse as BFP: 

𝐵𝐹𝑃 = 𝑥𝐹𝑃(𝑡) − 𝑑FP(𝑡)                                                (Eq.4) 

The base stock in the used finished products warehouse is given by: 

𝐵𝑊𝐹𝑃 = 𝑥𝑊𝐹𝑃(𝑡) − 𝑑WFP(𝑡)                                            (Eq.5) 

The base stock in the waste warehouse is given by: 

𝐵𝑊 = 𝑥𝑊(𝑡) − 𝑑W(𝑡)                                                  (Eq.6) 

Then, the production policy for the line LFP of the main producer is given by: 

𝑢𝐹𝑃(𝑡) =

{
 
 

 
 

0 𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 0

𝑈𝐹𝑃 𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 1  𝑎𝑛𝑑  𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) > 𝑥𝐹𝑃(𝑡)

𝑈𝐹𝑃 . (1 −∝
′
𝐹𝑃) 𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑  𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) > 𝑥𝐹𝑃(𝑡)

𝑚𝑖𝑛(𝑈𝐹𝑃, 𝑑𝐹𝑃(𝑡))  𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑  𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) ≤ 𝑥𝐹𝑃(𝑡)

𝑚𝑖𝑛(𝑈𝐹𝑃. (1 −∝
′
𝐹𝑃), 𝑑𝐹𝑃(𝑡))  𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) ≤ 𝑥𝐹𝑃(𝑡)

      (Eq.7) 

The production policies for the line L’WFP of the main producer are given by: 

𝑢′𝐹𝑃(𝑡) =

{
 
 

 
 

0 𝑖𝑓  𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0

𝑈′𝐹𝑃 𝑖𝑓  𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1  𝑎𝑛𝑑  𝑆𝑈𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) > 𝑥𝐹𝑃(𝑡)

𝑚𝑖𝑛(𝑈𝐹𝑃. (1 −∝
′
𝐹𝑃), 𝑑𝐹𝑃(𝑡))  𝑖𝑓𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑  𝑆𝑈𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) > 𝑥𝐹𝑃(𝑡)

𝑚𝑖𝑛(𝑈′𝐹𝑃, 𝑑𝐹𝑃(𝑡))  𝑖𝑓 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑  𝑆𝑈𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) ≤ 𝑥𝐹𝑃(𝑡)

𝑚𝑖𝑛(𝑈𝐹𝑃. (1 −∝
′
𝐹𝑃), 𝑑𝐹𝑃(𝑡))  𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝐹𝑃 + 𝑑𝐹𝑃(𝑡) ≤ 𝑥𝐹𝑃(𝑡)

     (Eq.8) 

𝑢′𝑊𝐹𝑃(𝑡) = {

0 𝑖𝑓 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0

𝑈′𝑊𝐹𝑃 𝑖𝑓𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝑊𝐹𝑃 + 𝑑𝑊𝐹𝑃(𝑡) > 𝑥𝑊𝐹𝑃(𝑡)

𝑚𝑖𝑛(𝑈′𝑊𝐹𝑃, 𝑑𝑊𝐹𝑃(𝑡))  𝑖𝑓𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝑊𝐹𝑃 + 𝑑𝑊𝐹𝑃(𝑡) ≤ 𝑥𝑊𝐹𝑃(𝑡)

              (Eq.9) 

For the generation of waste, the two lines produce waste. We assume for simplicity that this waste is of the 

same type. Moreover, the waste generation is assumed to be proportional to what is produced. We could consider 

a model with random waste generation but most often it is known. The main company can choose to treat this 

waste in order to resell it or not to treat it. In this case a loss is defined, with an associated cost, linked to the fact 

of having to pay for the treatment of this waste. In the case where the waste is resold to another company, the 

main company may wish to shape it and may decide to do so or not, depending on the defined base stock strategy. 

Then, the waste recovery level is defined by: 
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𝛽𝑊(𝑡) =

{
 
 
 

 
 
 

0 𝑖𝑓 𝑆𝑈𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0

𝛽𝑊𝑚𝑎𝑥 𝑖𝑓𝑆𝑈𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝑊 + 𝑑𝑊(𝑡) > 𝑥𝑊(𝑡)

𝛽𝑊1 𝑖𝑓𝑆𝑈𝐹𝑃(𝑡) = 1  𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝐵𝑊 + 𝑑𝑊(𝑡) > 𝑥𝑊(𝑡)

𝛽𝑊2 𝑖𝑓𝑆𝑈𝐹𝑃(𝑡) = 0  𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝑊 + 𝑑𝑊(𝑡) > 𝑥𝑊(𝑡)

𝑚𝑖𝑛(𝛽𝑊𝑚𝑎𝑥, 𝑑𝑊(𝑡))  𝑖𝑓𝑆𝑈𝐹𝑃(𝑡) = 1  𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝑊 + 𝑑𝑊(𝑡) ≤ 𝑥𝑊(𝑡)

𝑚𝑖𝑛(𝛽𝑊1, 𝑑𝑊(𝑡))  𝑖𝑓𝑆𝑈𝐹𝑃(𝑡) = 1  𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 0 𝑎𝑛𝑑 𝐵𝑊 + 𝑑𝑊(𝑡) ≤ 𝑥𝑊(𝑡)

𝑚𝑖𝑛(𝛽𝑊2, 𝑑𝑊(𝑡))  𝑖𝑓𝑆𝑈𝐹𝑃(𝑡) = 0  𝑎𝑛𝑑 𝑆′𝑈𝑊𝐹𝑃(𝑡) = 1 𝑎𝑛𝑑 𝐵𝑊 + 𝑑𝑊(𝑡) ≤ 𝑥𝑊(𝑡)

          (Eq.10) 

For all considered stages, we consider social and environmental impacts. For transportation, we could have 

emissions of greenhouse gas and emissions of fine particles causing cancer and/or noise from the means of 

transport and/or road traffic congestions. For production stage, we consider also emissions of greenhouse gas 

and of pollutants and work accidents and other musculoskeletal disorders and in the inventory stage we integrate 

also emissions of greenhouse gas and of pollutants and work accidents and other musculoskeletal disorders. 

These impacts will be considered as internalized economic costs integrated in the objective function to minimize. 

The details of the objective function are given in the next section 

4. Optimal replenishment policy for reverse and symbiotic flows 

The objective of the present work is to obtain an optimal replenishment policy for the main company PP. 

This policy should help to define the production and inventory management system trying to minimize costs. In 

this paper, we do not consider the service level as another objective to maximize because for industrial symbiosis, 

the customers may have needs that may not be fully met by the company PP. The parameters are given in Table 

3. 

Table 3  Parameters of the considered system. 

βdisp Percentage of collected used finished products which will be sent to the disposal stage 

βresuable Percentage of collected used finished products which will be sent to the customer CWFP 

βremanuf 
Percentage of collected used finished products which will be sent to the planto f the main 

company PP 

βWlosses Percentage of generated waste which will be sent to the disposal stage 

βW1 Percentage of waste generated during the production by the line LFP of the main company PP 

βW2 Percentage of waste generated during the production by the line L’WFP of the main company PP 

α’FP Percentage of production speed of the line LFP for remanufacturing activities 

I(xFP(t)) Total inventory cost for finished products at time t 

I’(xWFP(t)) Total inventory cost for used finished products at time t 

I’’(xW(t)) Total inventory cost for waste at time t 

P(xFP(t)) Total production cost for line LFP at time t 

P’(xWFP(t)) Total production cost for remanufacturing and line L’WFP at time t 

P’’(xW(t)) Total production cost for repackaging and line L’WFP at time t 

𝑇(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝐹𝑃(𝑡)) Total transportation cost at time t 

𝐶𝑒𝑛𝑣(𝑥𝐹𝑃(𝑡))  
Total environmental cost for finished products. This cost is composed by carbon taxes and waste 

disposal fees.  

𝐶′𝑒𝑛𝑣(𝑥𝑊𝐹𝑃(𝑡))  
Total environmental cost for used finished products. This cost is composed by carbon taxes and 

transportation/collection costs. 

𝐶𝑠𝑜𝑐(𝑥𝐹𝑃(𝑡))  
Total social cost for finished products. For example, costs of manpower in case of 

incident/accident. 

𝐶′𝑠𝑜𝑐(𝑥𝑊𝐹𝑃(𝑡))  
Total social cost for used finished products. This cost could be lesser than for finished products 

since some subsidies could be allocated. 

𝐶𝑙𝑜𝑠𝑡(𝛽𝑙𝑜𝑠𝑠𝑒𝑠(𝑡))  Total losses cost for disposal stage 

𝐺(𝑥𝑊(𝑡))  Total gain obtained by reselling the waste 
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We suppose that: 

Assumption 1: The initial conditions for the implementation of an echelon base stock policy are, at the 

initial time (t=0), there is no production and the levels of the both stocks are equal to the corresponding base 

sock levels before the arrival of a demand[50]. 

Assumption 2: All costs at given time t are independent of the base stock levels except the inventory costs. 

This hypothesis could be restrictive because the production costs depend on the base stock strategy, but by 

making this hypothesis we first simplify the theoretical study (the resulting equations will be more simple to 

express) and avoid the non-ergodicity possible phenomena that could occur and that would no longer allow us 

to study the problem using the IPA approach (because in this case biases could occur between the nominal 

trajectory and the perturbed trajectory, even if the perturbation is infinitesimally small). 

Assumption 3: For the same reason, we consider priorities between all possible events: i) arrival of a 

demand in the finished warehouse; ii) definition of dFP(t), dWFP(t) and dW(t); iii) production of finished products 

by lines LFP and L’WFP (we consider that lead times are null); iv) demand satisfaction in all warehouses; v) 

calculation of shortfall and inventory level the warehouses; and vi) calculation of economic costs (holding and 

backlog, production, transportation, environmental and social costs) and the objective function. Indeed, this 

hypothesis is necessary to apply the infinitesimal perturbation analysis and could be obtained by applying the 

Little’s Law[51]. 

Furthermore, it has to be noticed in this paper we do not consider the non-quality returns or product recalls 

or readjustments. 

The objective is then to minimize the total cost function, denoted by 𝐶(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝐹𝑃(𝑡), 𝑥𝑊(𝑡)). This cost 

function is given by: 

𝐶(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝐹𝑃(𝑡), 𝑥𝑊(𝑡)) = 𝐼(𝑥𝐹𝑃(𝑡)) + 𝐼′(𝑥𝑊𝑃(𝑡)) + 𝐼′′(𝑥𝑊(𝑡)) + 𝑃(𝑥𝐹𝑃(𝑡)) + 𝑃′(𝑥𝑊𝐹𝑃(𝑡)) + 𝑃′′(𝑥𝑊(𝑡)) +

𝑇(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝐹𝑃(𝑡)) + 𝐶𝑒𝑛𝑣(𝑥𝐹𝑃(𝑡)) + 𝐶
′
𝑒𝑛𝑣(𝑥𝑊𝐹𝑃(𝑡)) + 𝐶𝑠𝑜𝑐(𝑥𝐹𝑃(𝑡)) + 𝐶

′
𝑠𝑜𝑐(𝑥𝑊𝐹𝑃(𝑡)) + 𝐶𝑙𝑜𝑠𝑡(𝛽𝑙𝑜𝑠𝑠𝑒𝑠(𝑡)) − 𝐺(𝑥𝑊(𝑡))  (Eq.11) 

Where 𝐼(𝑥𝐹𝑃(𝑡)) is the total warehouse cost for finished products (including holding and backlog costs, 

see equation (12) below), 𝐼′(𝑥𝑊𝐹𝑃(𝑡)) is the total warehouse cost for used finished products, 𝐼′′(𝑥𝑊(𝑡)) is the 

total warehouse cost for used finished products, 𝑃(𝑥𝐹𝑃(𝑡)) is the total production cost for finished products 

(line LFP), 𝑃′(𝑥𝑊𝑃𝐹(𝑡)) is the total production cost for remanufacturing and 𝑃′′(𝑥𝑊(𝑡)) total production cost 

for the repackaging of used finished products (line L’WFP), 𝑇(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝐹𝑃(𝑡)) is the total transportation cost 

for finished and used products (same cost since the companies are located in the same industrial park, 

𝐶𝑒𝑛𝑣(𝑥𝐹𝑃(𝑡)) is the total environmental cost and 𝐶𝑠𝑜𝑐(𝑥𝐹𝑃(𝑡)) the total social cost for finished products, 

𝐶′𝑒𝑛𝑣(𝑥𝑊𝑃(𝑡))  is the total environmental cost and 𝐶′𝑠𝑜𝑐(𝑥𝑊𝑃(𝑡))  the total social cost for used finished 

products. 𝐺(𝑥𝑊(𝑡)) is the total gain obtained with the waste (including environmental and social aspects). 

𝐼(𝑥𝐹𝑃(𝑡)) = {
𝑖+. 𝑥𝐹𝑃(𝑡) 𝑖𝑓 𝑥𝐹𝑃(𝑡) > 0

𝑖−. 𝑥𝐹𝑃(𝑡) 𝑖𝑓 𝑥𝐹𝑃(𝑡) ≤ 0
                                       (Eq.12) 

The average total cost over an infinite time horizon is given by the following equation, it is given as a 

function of the base stock levels. 

𝐿(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝑃(𝑡), 𝑥𝑊(𝑡)) = [ 𝑙𝑖𝑚
𝑇→∞

(
1

𝑇
(∫ 𝐶(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝑃(𝑡), 𝑥𝑊(𝑡)

𝑇

0
) . 𝑑𝑡)]                    (Eq.13) 

From assumption 2, this total average cost is equal to: 

𝐿(𝑡, 𝐵⃗ ) = [ 𝑙𝑖𝑚
𝑇→∞

(
1

𝑇
(∫ 𝐼(𝑠, 𝐵⃗ ) +

𝑇

0
𝐼′(𝑠, 𝐵⃗ ) + 𝐼′′(𝑠, 𝐵⃗ )) . 𝑑𝑠 + 𝐴)]                           (Eq.14) 

    With   𝐵⃗ = [

𝐵𝐹𝑃
𝐵𝑊𝑃
𝐵𝑊

]                                                      (Eq.15) 
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And 

𝐴 = 𝑃(𝑥𝐹𝑃(𝑡)) + 𝑃′(𝑥𝑊𝐹𝑃(𝑡)) + 𝑃′′(𝑥𝑊(𝑡)) + 𝑇(𝑥𝐹𝑃(𝑡), 𝑥𝑊𝐹𝑃(𝑡)) + 𝐶𝑒𝑛𝑣(𝑥𝐹𝑃(𝑡)) + 𝐶
′
𝑒𝑛𝑣(𝑥𝑊𝐹𝑃(𝑡)) + 𝐶𝑠𝑜𝑐(𝑥𝐹𝑃(𝑡)) +

𝐶′𝑠𝑜𝑐(𝑥𝑊𝐹𝑃(𝑡)) + 𝐶𝑙𝑜𝑠𝑡(𝛽𝑙𝑜𝑠𝑠𝑒𝑠(𝑡)) − 𝐺(𝑥𝑊(𝑡))  

(Eq.16) 

In what follows, we will study the nominal and perturbed trajectories of inventories in the warehouses. 

5. Infinitesimal perturbation analysis 

This section is devoted to the study of the trajectories which are given in terms of decision variables for the 

problem. They correspond to the base stock level of each warehouse. For this purpose, we define a positive 

perturbation (but similar results are obtained with a negative perturbation) for each of the FP and WFP and waste 

inventories: ΔFP for finished products, ΔWFP for used finished products and ΔW for waste. The nominal trajectories 

for inventories will be represented by 𝑥𝐹𝑃(𝑡) for finished products, by 𝑥𝑊𝐹𝑃(𝑡) for used finished products and 

by 𝑥𝑊(𝑡) for waste. The perturbated trajectory for inventories will be represented by 𝑥𝐹𝑃
𝛥(𝑡) for finished 

products, by 𝑥𝑊𝐹𝑃
𝛥(𝑡) for used finished products and by 𝑥𝑊

𝛥(𝑡) for waste. 

We obtain the following lemmas. The proof of these lemmas is similar to the one given in[52]. It consists of the 

study of all possible cases on the time horizon. 

Lemma 1: 𝑥𝐹𝑃(𝑡) ≤ 𝑥𝐹𝑃
𝛥(𝑡) ≤ 𝑥𝐹𝑃(𝑡) + 𝛥𝐹𝑃 ,   ∀ 𝑡. 

Lemma 2: 𝑥𝑊𝐹𝑃(𝑡) ≤ 𝑥𝑊𝐹𝑃
𝛥(𝑡) ≤ 𝑥𝑊𝑃(𝑡) + 𝛥𝑊𝐹𝑃 ,   ∀ 𝑡. 

Lemma 3: 𝑥𝑊(𝑡) ≤ 𝑥𝑊
𝛥(𝑡) ≤ 𝑥𝑊(𝑡) + 𝛥𝑊,   ∀ 𝑡. 

These lemmas highlight the fact that the disturbed path is bounded by the nominal path, which will allow 

to propose a simulation-based optimization. After studying the trajectories, we can define a gradient of the cost 

function.  

For an infinitesimal perturbation  𝛥𝐹𝑃 on the base stock level for finished products, the inventory cost due 

to the perturbation can be expressed as: 

𝐼(𝑥𝐹𝑃(𝑡)) = {
𝑖+ .  𝛥𝐹𝑃, 𝑠𝑖  𝛥𝐹𝑃 ≥ 0

𝑖− .  𝛥𝐹𝑃, 𝑠𝑖  𝛥𝐹𝑃 < 0.
                                                                         (Eq.17) 

Let 𝑇1(𝐵𝐹𝑃) be the total period during which the inventory level of finished products is positive, 𝑇2(𝐵𝐹𝑃) 

be the total period during which the inventory level of finished products is negative.  

On the time horizon T, equation (17) can be written as: 

1

𝑇
∫ (𝐼(𝑥𝐹𝑃(𝑡)))𝑑𝑡
𝑇

0

=
1

𝑇
[∫ (𝑖+ .  𝛥𝐹𝑃)𝑑𝑡 − ∫ (𝑖− .  𝛥𝐹𝑃1)𝑑𝑡

𝑇2(𝐵𝐹𝑃)

0

𝑇1(𝐵𝐹𝑃)

0

] 

1

𝑇
∫ (𝐼(𝑥𝐹𝑃(𝑡)))𝑑𝑡
𝑇

0

=
[𝑖+ .  𝛥𝐹𝑃. 𝑇1(𝐵𝐹𝑃)  − 𝑖

− .  𝛥𝐹𝑃. 𝑇2(𝐵𝐹𝑃) ]

𝑇
            

We obtain same results for an infinitesimal perturbation 𝛥𝑊𝐹𝑃 on the base stock level for used finished 

products and  𝛥𝑊  on the base stock level for waste. Let 𝑇3(𝐵𝑊𝐹𝑃) be the total period during which the 

inventory level of used finished products is positive and 𝑇4(𝐵𝑊𝐹𝑃) the total period during which the inventory 

level of used finished products is negative. Let 𝑇5(𝐵𝑊) be the total period during which the inventory level of 

waste is positive and 𝑇6(𝐵𝑊) the total period during which the inventory level of waste is negative. We obtain 

the following equation for average perturbated total cost over a finite horizon: 

𝐿𝑇
∆ (𝑡, 𝐵𝐹𝑃 +  𝛥𝐹𝑃, 𝐵𝑊𝐹𝑃 +  𝛥𝑊𝐹𝑃, 𝐵𝑊 +  𝛥𝑊) =          𝐿𝑇(𝑡, 𝐵⃗ ) +
 𝑇1(𝐵𝐹𝑃).𝑖

+ . 𝛥𝐹𝑃−𝑇2(𝐵𝐹𝑃).𝑖
− . 𝛥𝐹𝑃+𝑇3(𝐵𝑊𝐹𝑃).𝑖

+ . 𝛥𝑊𝐹𝑃−𝑇4(𝐵𝑊𝐹𝑃).𝑖
− . 𝛥𝑊𝐹𝑃+𝑇5(𝐵𝑊).𝑖

+ . 𝛥𝑊−𝑇6(𝐵𝑊).𝑖
− . 𝛥𝑊

𝑇
                           (Eq.18) 

We can then estimate the gradient from the trajectories:  

𝜕𝐿𝑇(𝑡,𝐵⃗ )

𝜕𝐵⃗ 
= lim

∆𝑖→0

𝐿𝑇(𝑡,𝐵𝐹𝑃+ 𝛥𝐹𝑃,𝐵𝑊𝐹𝑃+ 𝛥𝑊𝐹𝑃,𝐵𝑊+ 𝛥𝑊)− 𝐿𝑇(𝑡,𝐵⃗ ) 

∆𝑖
                     (Eq.19) 
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Consequently, we obtain: 

𝜕𝐿𝑇(𝑡, 𝐵⃗ )

𝜕𝐵⃗ 
=
𝑇1(𝐵𝐹𝑃). 𝑖

+ − 𝑇2(𝐵𝐹𝑃). 𝑖
− + 𝑇3(𝐵𝑊𝐹𝑃). 𝑖

+ − 𝑇4(𝐵𝑊𝐹𝑃). 𝑖
− + 𝑇5(𝐵𝑊). 𝑖

+ − 𝑇6(𝐵𝑊). 𝑖
−

𝑇
 

Theorem 1: The estimator of the cost gradient is unbiased. 

𝜕𝐸[𝐿𝑇(𝑡,𝐵⃗ )]

𝜕𝐵⃗ 
= 𝐸 [

𝜕𝐿𝑇(𝑡,𝐵⃗ )

𝜕𝐵⃗ 
].                                        (Eq.20) 

Proof of Theorem 1 

To prove this, we need to show that the following 2 conditions are satisfied. The first condition is to prove 

that the derivative of the cost function 𝜕[𝐿𝑇(𝑡, 𝐵⃗ )]/𝜕𝐵⃗  exists with a probability 1 ∀ 𝐵⃗ . To do this, we compute 

the derivative on the right and the derivative on the left, they must be equal. The second condition is to prove 

that the function 𝐿𝑇(𝑡, 𝐵⃗ ) is Lipschitz continuous and has a Lipschitz constant with a finite first moment. 

 First condition: 

The right derivative is given by: 

lim
∆𝑖→0

+

𝐿𝑇(𝑡, 𝐵𝐹𝑃 +  𝛥𝐹𝑃, 𝐵𝑊𝐹𝑃 +  𝛥𝑊𝐹𝑃, 𝐵𝑊 +  𝛥𝑊) − 𝐿𝑇(𝑡, 𝐵⃗ ) 

∆𝑖
=            

=                    
𝑇1(𝐵𝐹𝑃). 𝑖

+ − 𝑇2(𝐵𝐹𝑃). 𝑖
− + 𝑇3(𝐵𝑊𝐹𝑃). 𝑖

+ − 𝑇4(𝐵𝑊𝐹𝑃). 𝑖
− + 𝑇5(𝐵𝑊). 𝑖

+ − 𝑇6(𝐵𝑊). 𝑖
−

𝑇
   

 (Eq.21) 

The left derivative is given by: 

           lim
                ∆𝑖→0

−

 𝐿𝑇(𝑡,𝐵⃗ )−𝐿𝑇(𝑡,𝐵𝐹𝑃+ 𝛥𝐹𝑃,𝐵𝑊𝐹𝑃+ 𝛥𝑊𝐹𝑃,𝐵𝑊+ 𝛥𝑊) 

∆𝑖
= =

           
𝑇1(𝐵𝐹𝑃).𝑖

+−𝑇2(𝐵𝐹𝑃).𝑖
−+𝑇3(𝐵𝑊𝐹𝑃).𝑖

+−𝑇4(𝐵𝑊𝐹𝑃).𝑖
−+𝑇5(𝐵𝑊).𝑖

+−𝑇6(𝐵𝑊).𝑖
−

𝑇
                      (Eq.22) 

These derivatives are equal ∀ 𝐵⃗ . We thus prove that the derivative of the cost function exists. 

 Second condition: 

To guarantee ergodicity we need to verify that the demand must be satisfied on average over the time 

horizon. This condition is guaranteed by assumption 3 and the definition of the chosen policy. Indeed, the chose 

replenishment policy consists in producing at the maximum capacity of the machine when the production is 

behind the demand and the stock level is not allowed to decrease without limit. 

In what follows, we will use these results in a simulation algorithm allowing us to directly calculate the 

optimal values of the base stock levels starting from an initial trajectory. 

6. Computational examples 

In the previous section, we studied the trajectories and expressed the disturbed trajectory of the inventory 

levels in terms of the nominal trajectory. We have determined that the deviation between the nominal trajectory 

and the perturbed trajectory is less than or equal to the value of the defined perturbation (Lemmas 1-3). Indeed, 

as the obtained estimator of the average total cost is unbiased we can use these theoretical results in the simulation, 

considering them as valid. 

We implement these theoretical results in a simulation-based algorithm to determine the base stock levels 

that minimize the average total cost. We consider a simulation time which is large enough to derive reliable 

values (we chose a number of times when the finished products line is not able to produce -due to breakdowns, 

incidents...- equals to 500 000). The simulation algorithm is based on the principle of discrete event simulation. 

The principle is to calculate the states of the system and the dates of the next events, in order to know the 

evolution of the system and then use these results in the simulation. The initial conditions respect the Assumption 

1 and we generate a set of random variables that we will use for all the simulations in order to ensure the validity 
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of the Assumption 3. The simulation parameters are defined in Table 3. The production states of the lines are 

given by the same exponential laws with the parameter equals to 0.05 if the line is in condition to produce, with 

the parameter equals to 0.01 if the line is not in condition to produce. The demand for finished products is given 

by an exponential law of parameter 8, the demand for used finished products is given by an exponential law of 

parameter 2 and the demand for waste is given by an exponential law of parameter 1. The flow of returned 

products is given by an exponential law of parameter 5. The other parameters are the same as the work done by 

Hennequin et al.[15]. 

Table 3  Simulation parameters of the considered system. 

Parameters Values Parameters Values 

UFP 50 βdisp 10% 

U’FP 10 βreusable 60% 

U’WFP 10 βremanuf 30% 

βWmax 30 βWlosses 20% 

βW2 40% βW1 40% 

i+ 10 i- 200 

We compare our chosen production policy to the hedging point policy[53]. The principle of the hedging point 

is to find an optimal inventory level h* that minimizes costs (generally production costs) by integrating 

uncertainties (such as breakdowns). The hedging point strategy consists of producing at maximum capacity if 

the inventory level is below this hedging point, producing nothing if it is above this hedging point, and producing 

at the rate of demand if it is equal to this hedging point. We obtain the following results (see Table 4) with 𝐵 ∗𝑖 

the optimal value obtained for the base stock levels and h*
i the hedging points. To obtain these values, we first 

calculate the total average cost in function of the base stock level for finished products (the other base stock 

levels are equal to 0), then calculate the total average cost in function of the base stock level for used finished 

products (with 𝐵 ∗𝐹𝑃=47.45) and finally calculate the total average cost in function of the base stock level for 

waste. We have the same principle with the hedging points. 

Table 4  Optimal obtained results. 

 𝑩 ∗𝑭𝑷 𝑩 ∗𝑾𝑭𝑷 𝑩 ∗𝑾 

𝐵 ∗𝑖 

Total average cost (M.U.) 

Standard error  

47.45 

32136.82 MU 

0.0219 

22.13 

29512.37 MU 

0.036 

13.87 

28524.56 MU 

0.0251 

 ℎ ∗𝐹𝑃 ℎ ∗𝑊𝐹𝑃 ℎ ∗𝑊 

h*
i 

Total average cost (M.U.) 

Standard error  

49.38 

34454.23 MU 

0.022 

24.74 

31736.12 MU 

0.025 

14.66 

30627.15 MU 

0.023 

These results depend heavily on various parameters and more specifically on costs and maximum 

production capacities, but also on needs. Indeed, for base stock levels the demands are considered for all stages 

which permits reducing the total amount of products in warehouses. It has to be noticed that we chose values for 

maximum production capacities that allow to respond to the demands.  

We will also study the evolution of base stock levels and hedging points in function of the environmental 

and social costs during production, and losses cost. The other parameters remain the same. In figure 3, we 

represent the evolution of base stock level for used finished products in function of the environmental cost. In 

figure 4 we represent the evolution of base stock level of waste in function of the losses cost and in figure 5 we 

represent the evolution of base stock level, for finished products in function of the inventory cost i+. 
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Figure 3  Evolution of the base stock level for used finished products in function of the environmental cost 

 (𝐵 ∗𝐹𝑃=47.45 and 𝐵𝑊 =0). 

 

Figure 4  Evolution of the base stock level for waste in function of the losses cost 

 (𝐵 ∗𝐹𝑃=47.45 and 𝐵 ∗𝑊𝐹𝑃=22.13). 

It seems that the losses cost has a little impact on the value of the echelon base stock level for waste since 

the obtained values do not simply a linear regression like it seems to be for the first case with the echelon base 

stock for finished products. We do have a small inflection point that needs to be properly analysed for a cost 

equal to 50. 

 

Figure 5  Evolution of the base stock level for finished products in function of the inventory cost 

(𝐵𝑊𝐹𝑃 =0and 𝐵𝑊 =0). 

Concerning the inventory cost, the echelon base stock will of course decrease if the value is more important. 

These results must be compared with the costs of backorder because if the ratio between the two increases or 

decreases the results obtained can be very different. 

The next proposed simulation concerns the generation of random variables which do not necessarily allow 

for checking the ergodicity and this in order to extend the numerical results. More specifically, we consider that 

the states of the lines are defined by a Weibull law. The shape parameter and the scale parameter of the Weibull 
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distribution are given by 2 and 100 respectively. The other parameters remain the same. We also compare, these 

results with discrete case and a mathematical programming approach simulated with uniform laws (see also this 

work[15]) in which we do not consider the waste flows and profits from the resale of waste). Then, we obtain the 

results given in Table 5. 

Table 5  Optimal obtained results with a Weibull law for the states of the lines. 

Continuous flows (Weibull law) 𝑩 ∗𝑭𝑷 𝑩 ∗𝑾𝑭𝑷 𝑩 ∗𝑾 

𝐵 ∗𝑖 (SFM and IPA) 

Total average cost (M.U.)  

Standard error  

51.37 

32435.43 MU 

0.009 

23.52 

29948.78 MU 

0.024 

14.24 

29647.37 MU 

0.017 

 ℎ ∗𝐹𝑃 ℎ ∗𝑊𝐹𝑃 ℎ ∗𝑊 

h*
i (SFM and IPA) 

Total average cost (M.U.) 

Standard error  

53.47 

34454.23 MU 

0.017 

26.23 

31736.12 MU 

0.022 

16.52 

30627.15 MU 

0.028 

Discrete flows (Uniform laws) 𝐵 ∗𝐹𝑃 𝐵 ∗𝑊𝐹𝑃 𝐵 ∗𝑊 

𝐵 ∗𝑖 (mathematical prog.) 

Total average cost (M.U.)  

19 

9316MU 

7 

9986MU 

7 

9169 MU 

 ℎ ∗𝐹𝑃 ℎ ∗𝑊𝐹𝑃 ℎ ∗𝑊 

h*
i  (mathematical prog.) 

Total average cost (M.U.)  

41 

10337.9 MU 

8 

10226.9 MU 

6 

10186.5 MU 

To estimate the optimal base stock levels, we apply the same strategy as before. It seems that our results 

are always verified even when the ergodicity is no longer totally guaranteed. But in this case, the proof of non-

bias between the trajectories is not obvious. For the discrete case, since we calculate fewer points, the cost 

function values are lower. 

7. Conclusion 

In this paper, we have proposed an extension of the work presented by Hennequin et al. [15] by considering 

on the one hand a stochastic fluid model, and on the other hand, the infinitesimal perturbation analysis approach 

in order to define an optimization-based simulation ensuring optimal results by proving that the perturbated 

trajectory is unbiased compared with the nominal trajectory if the perturbation is sufficiently small and if the 

ergodicity is ensured. To greatly simplify the presentation and the mathematical equations, we have assumed 

that the costs are independent of these base stock levels, which also ensures ergodicity and therefore the 

simplification of the theoretical study. However, this assumption can be lifted and similar results can be found 

(with slightly different demonstrations) without affecting the fact that the perturbed path is unbiased. It should 

be noted that the numerical results obtained depend very strongly on the values of the parameters and it would 

therefore be interesting to conduct a sensitivity analysis. This can also be done theoretically using the 

infinitesimal perturbation analysis. The novelty of the presented work lies in the choice of the proposed system 

allowing to study inverse and symbiotic logistic flows. The expected total average cost composed of the 

production and inventory costs, internalized environmental and societal costs as well as the losses associated 

with possible resales (second-hand market and industrial symbiosis). 

The next step is to conduct a sensitivity analysis and thus identify key parameters to facilitate the 

implementation of symbiotic flows and reverse logistics. Based on these results, it will be easier to clearly define 

the production and inventory management strategy. Other policies should be implemented in order to identify 

the best operational strategy to define. We will then be able to integrate into our operational optimization scheme 

real data collected on an existing eco-park in order to show to the actors the interest in investing in an industrial 

symbiosis. To do so, we will have to consider in our model the different delays not considered here (these can 
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be very easily integrated in the stochastic fluid model). However, it should be noted that the industrial symbiosis 

only works if all the actors are clearly committed, studies on their behavior and their impact on the management 

would also be useful. Game theory could be an interesting method to use for this. Furthermore, for optimization 

of random systems, it is generally assumed that the parameters associated with stochastic input processes are 

known. 
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