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ABSTRACT 

In the pursuit of advancing neuromorphic computing, 2D material-based memtransistors have emerged as a 

promising avenue. These memtransistors offer a unique blend of attributes, including tiny dimensions, compactness, and 

low-power operation, making them ideal candidates to mimic human brain functionality for artificial intelligence 

applications. This review focuses on various 2D materials such as MoS2, WSe2, h-BN, and In2Se3, and their suitability 

for bio-synapse applications, highlighting their advantages over other synaptic devices. Additionally, the review suggests 

the development of multi-terminal memtransistor-based synaptic devices with innovative operational principles for in-

memory computing applications. Finally, concludes by discussing both the current state of development and the prospects 

and challenges that lie ahead, aiming to inspire further progress in information storage and neuromorphic computing. 

Keywords: 2D materials; memtransistor; synaptic devices; CMOS technology; neuromorphic computing and artificial 

intelligence 

1. Introduction 

In the context of artificial intelligence (AI) applications, conventional computer hardware adhering to the 

serial Von Neumann architecture encounters significant challenges related to performance and energy 

efficiency [1]. This is primarily attributed to the extensive data transfer requirements between processing and 

memory units [2]. To address this critical issue, a promising approach involves the integration of principles 

from computational neuroscience and neuromorphic engineering [3,4]. This integration aims to establish 

computing systems that operate in a parallelized, spike-based fashion, offering a potential solution to alleviate 

the well-known von Neumann bottleneck [5,6]. The goal is to pave the way for the next generation of 

neuromorphic computing systems that are energy-efficient and capable of mimicking the sophisticated 

cognitive functions of the human brain [7]. 

The memtransistor, a groundbreaking electronic device at the intersection of memristors and transistors, 

represents a pivotal advancement in electronics [8,9]. This innovative device holds the potential to revolutionize 
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how we process and store information by seamlessly merging memory and logic functions within a single 

unit[10]. Unlike traditional transistors, which predominantly focus on logic operations, memtransistors possess 

a unique ability to retain and process data simultaneously [6,11]. This dual functionality has profound 

implications for various fields, from neuromorphic computing, where it mimics the behavior of biological 

synapses, to in-memory computing, which enhances data processing speed and energy efficiency[10,12,13]. 

Several groups of researchers are actively exploring the potential of 2D material-based memtransistors to 

replicate the complex behaviors of biological synapses [6,14–18]. Taking advantage of 2D material-based 

memtransistors has emerged as an exciting frontier in electronic devices in the quest to improve computing 

power and energy efficiency [19,20]. In contrast to traditional semiconductor devices, these memtransistors are 

constructed from atomically thin 2D materials offering unique capabilities that promise to have a wide range 

of applications. A key to this technology lies in the extraordinary properties of 2D materials such as 

molybdenum disulfide (MoS2)[21,22], tungsten selenide (WSe2) [23], hexagonal boron nitride (h-BN) [24,25], and 

indium selenide (In2Se3)[26]. These materials are characterized by their remarkable electrical conductivity, 

flexibility, and compatibility with nanoscale fabrication processes. Such attributes make them ideal candidates 

for revolutionizing electronic devices and, in particular, memtransistors. 

Here, we will delve into the specifics of 2D material memtransistors, their applications in neuromorphic 

computing, the challenges they face, and the prospects they hold for shaping the future of information storage 

and neuromorphic intelligence. This article will walk you through the unique features of MoS2, WSe2, h-BN, 

and In2Se3 to help you better understand how they contribute to the evolution of 2D material based 

memtransistor technology. The review concludes by assessing the current progress and future challenges, 

aiming to inspire advancements in information storage and neuromorphic computing. 

2. Introduction to the artificial synapses and neurons based 2D materials 

Artificial synapses and neurons are essential for neuromorphic computing, an innovative field aiming to 

replicate the brains neural networks for more efficient and intelligent systems[9]. These artificial elements 

simulate the functions of biological neurons and synapses, enabling advanced information processing and 

communication [5]. Two-dimensional (2D) materials have emerged as critical components in this technology[27]. 

Due to their unique properties including high surface area, excellent electrical conductivity, and mechanical 

flexibility, 2D materials significantly enhance the performance and efficiency of artificial neurons and 

synapses[28,29]. By integrating 2D materials, researchers can create neuromorphic devices that operate at lower 

power, respond faster, and are more compact[30]. These advancements promise to revolutionize computing, 

making it possible to develop highly efficient, scalable, and versatile systems[30]. The ongoing research and 

development in this field are paving the way for future breakthroughs in artificial intelligence, flexible 

electronics, and beyond[19,31]. 

2.1. Artificial synapses 

Artificial synapses are critical components in the development of neuromorphic computing systems, 

which aim to replicate the brains neural architecture to achieve more efficient and intelligent computational 

capabilities[17]. These artificial synapses emulate the function of biological synapses, enabling complex signal 
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processing and communication between artificial neurons[32]. Incorporating 2D materials into artificial 

synapses not only enhances their functionality but also opens up new possibilities for flexible and wearable 

neuromorphic systems[33]. Further, explores the integration of 2D materials in artificial synapses, examining 

their potential to revolutionize neuromorphic computing and advance the development of next-generation 

computing technologies[34]. 

2.2. Artificial neurons 

Artificial neurons are fundamental building blocks in the realm of neuromorphic computing, designed to 

mimic the information-processing capabilities of biological neurons[35]. By replicating the intricate 

functionalities of the human brain, these artificial neurons aim to enable more efficient and intelligent 

computational systems[36]. Recent advancements in materials science have brought 2D materials, offering 

unprecedented opportunities for enhancing the performance and capabilities of artificial neurons. 2D materials 

are characterized by their atomic thinness, high surface area, exceptional electrical properties, and mechanical 

flexibility[18]. These unique features make them ideal candidates for developing high-performance artificial 

neurons[37]. The high surface area of 2D materials allows for greater interaction with other materials and 

components, thereby enhancing the efficiency and responsiveness of neural processing. Their excellent 

electrical conductivity and mobility facilitate faster and more energy-efficient signal transmission, which is 

essential for real-time processing in neuromorphic systems. Additionally, the mechanical flexibility of 2D 

materials supports the creation of flexible and wearable electronic devices, paving the way for innovative 

applications in healthcare, robotics, and beyond [26]. 

3. 2D material based memtransistors for artificial synapses 

Memtransistors, or memory transistors, are devices that combine the functions of both memory and 

transistors [38]. They have the potential to play a crucial role in the development of neuromorphic computing, 

which aims to mimic the way the human brain works. Artificial synapses, on the other hand, are components 

that replicate the functionality of biological synapses in the nervous system, allowing for the transmission of 

signals between artificial neurons. Figure 1 Summarizes the various 2D materials structures are MoS2, WSe2, 

h-BN, and In2Se3. To fabricate artificial synaptic devices, a variety of 2D materials has been utilized as a 

memristive layer, which is the first step in creating an exceptionally energy-efficient artificial neural network[11]. 

These materials possess unique electrical and optical properties that make them ideal for applications in next-

generation electronics [9,39]. The exceptional features of 2D materials, such as high surface area, tunable 

electronic properties, flexibility, and low power consumption, offer substantial advantages over traditional bulk 

materials. In the context of neuromorphic computing, 2D materials-based synaptic devices provide several key 

benefits. Their atomic thinness allows for tight electrostatic control and reduced leakage currents, enabling 

low-power operation essential for energy-efficient computing. Furthermore, the tunability of 2D materials' 

electronic properties facilitates the precise emulation of various synaptic functions, including short-term 

plasticity (STP)[40], long-term plasticity (LTP)[40], paired-pulse facilitation (PPF)[41], and spike-timing-

dependent plasticity (STDP)[42]. These functionalities are crucial for developing hardware that can support 
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complex neural network behaviors and learning processes. 

3.1. MoS2-based memtransistor devices 

Molybdenum disulfide (MoS2) is a two-dimensional (2D) semiconductor material with unique electronic 

properties that make it promising for building synaptic devices [43]. In MoS2-based memtransistors, MoS2 

serves as the active channel material. The device typically consists of layers of MoS2 sandwiched between two 

electrodes, forming a transistor-like configuration. By applying voltage pulses, the conductance of the MoS2 

layer can be modulated, allowing the device to emulate synaptic behavior. Key advantages of MoS2-based 

memtransistor devices include their high carrier mobility, scalability, and compatibility with existing 

semiconductor fabrication processes [44,45]. For example, Dual-gated MoS2 memtransistors were fabricated on 

polycrystalline monolayer MoS2 grown by chemical vapor deposition (CVD). The devices use a global bottom 

gate and a local top gate as shown in Figure 2a. Specifically, polycrystalline monolayer MoS2 was grown by 

CVD on doped Si substrates coated with 300 nm thick thermal oxide serving as the bottom gate dielectric. 

Figure 2b shows the bipolar resistive switching characteristics of the dual-gated MoS2 memtransistor at 

different bottom gate biases (VBG) with a floating top gate. The device channel dimensions of all individual 

and crossbar devices are identical (channel length, L = 0.9 µm; channel width, W = 0.7 µm). The device is 

initially in a low resistance state (LRS) and switches to a high resistance state (HRS) at forward bias (drain 

voltage VD > 0). This RESET process (i.e., switching from LRS to HRS) occurs during both sweeps 1 and 2 

in Figure 2b. In contrast, the device undergoes a SET process (i.e., switching from HRS to LRS) at reverse 

bias (VD < 0). It should be noted that SET and RESET do not require an electroforming process. As a result, 

dual-gated memtransistors show a pinched hysteresis loop in the clockwise direction at forward bias, in 

contrast to the counter-clockwise loops for single-gated MoS2 memtransistors (bottom gate or top gate). The 

dual-gated MoS2 memtransistors show excellent cycle-to-cycle endurance, as shown by the tight distribution 

of switching characteristics for 250 bias sweeps (Figure 2c). The I–V characteristics do not pass through VD 

= ID = 0 in Figures 2b and 2c, which is a result of a mem-capacitive effect that is known to induce a pinched 

Figure 1. Schematic illustration of various 2D materials such as MoS2, WSe2, h-BN, and In2Se3. 
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hysteresis loop in the charge–voltage plot as opposed to the current-voltage plot. This mem-capacitive effect 

is expected near the metal contacts as has been previously observed in MoS2 memristors and single-gated MoS2 

memtransistors. The two gate terminals in dual-gated memtransistors provide electrostatic control over 

synaptic learning behavior. As shown in Figure 2d, tunable learning is achieved in long-term potentiation 

(LTP) and long-term depression (LTD) for dual-gated memtransistors, where VD pulses of 1 ms period are 

applied and the postsynaptic current (IPSC = ID) is measured between pulses. For simplicity, the top gate is 

grounded in all measurements, while the bottom gate voltage is controlled during the reading and writing 

operations. The artificial neural network (ANN) is trained to classify MNIST (Modified National Institute of 

Standards and Technology) database handwritten digits using backpropagation showed in Figure 2e. Each 

input neuron corresponds to a distinct pixel in the image. For representing each synaptic weight (w) between 

fully connected neurons in the input, hidden, and output layers, a pair of dual-gated MoS2 memtransistors is 

employed. 

 

3.2. WSe2-based memtransistor synaptic devices  

WSe2-based memtransistor synaptic devices represent a cutting-edge approach to neuromorphic 

computing, inspired by the brain's synaptic connections. These devices leverage WSe2, a 2D semiconductor 

Figure 2 a) Schematic of the dual-gated MoS2 memtransistor structure. The Si substrate acts as a global bottom gate and 

patterned Au acts as a local top gated). (b) Gate-tunable memristive switching (VD = -+ 30)   at various bottom gate biases 

(VBG) from −60 to 60 V with the top gate floating (L = 0.9 μm, W = 0.7 μm). The black arrow and number indicate the bias 

sweep sequence (clockwise switching). c) A plot of 250 full switching cycles at VBG = 0 V and VTG = 0 V. (d) Tunable long-

term potentiation and depression of MoS2 dual-gated memtransistors. (i) Pulsing scheme for long-term depression (LTD) at 

various VBG values during the writing operation (VW BG). The device was read at VD = 1 V and various VBG values during 

the reading operation (VR BG). (ii) Pulsing scheme for long-term potentiation (LTP) at VW BG during the writing operation. 

(e) The ANN is trained to perform the classification of Modified National Institute of Standards and Technology database 

(MNIST) handwritten digits using backpropagation. Reproduced with permission [58]. Copyright 2020, Advance Functional 

Material. 
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material with unique properties, as the active channel material. For example, Figure 3a presents a schematic 

illustration and a circuit diagram of the synaptic barristor. This three-terminal device can be considered a gate-

tunable memristor composed of a WO3–x resistive memory and a WSe2/graphene barristor. The 

WSe2/graphene heterojunction, which is formed by van der Walls (vdW) assembly of the mechanically 

exfoliated WSe2 layers on graphene, acts as a variable-barrier Schottky diode owing to the electrostatically 

tuned work function of graphene. Unlike typical memristors based on metal/oxide/metal structures, it is critical 

to have the layered semiconducting WSe2 in our synaptic barristor because its vdW surface enables to form 

the variable-barrier contact with the graphene without Fermi-level pinning [46,47]. This bottom barrister 

component enables electrical regulation the total current flow through the entire device by controlling the gate 

voltage; hence, the switching states in the vertically integrated memristor can be actively tuned. The current-

voltage (ID–VD) characteristics of the 2D heterostructure device are drastically altered by the presence of the 

intermediate WO3–x layer, as shown in Figure 3b. The device composed of Ag/WO3–x/WSe2/graphene 

heterostructures exhibits a typical resistive switching hysteresis loop in the ID–VD curve upon sweeping the 

source-drain voltage (VD) at the zero-gate voltage (VG). Based on the existence of an interfacial oxide layer 

between Ag (or Ti) and WO3–x and the bipolar switching with the negative SET voltage, the switching behavior 

may be attributed to the migration of oxygen vacancies and electrochemical redox reactions at the Ag (or 

Ti)/WO3–x interface. Meanwhile, we believe that forming a metallic filament by diffusion of the top Ag cations 

may not be the dominant switching mechanism because of the low current level (≈10-8 A for LRS) measured 

in our controlled devices including Ag/WO3–x/WSe2/graphene (Figure 3b). 

Our monolithic memristor can emulate two neuronal-based synaptic functions even without the 

application of gate voltages. As shown in Figure 3c, here, we define the top metal electrode (drain) and the 

bottom electrode (source) as pre- and post-neurons, respectively. The synaptic weight represented by the 

degree of connectivity between the pre-and post-neurons is simply described by the postsynaptic current (PSC) 

magnitude when the input spikes stimulate the synapse [48]. The ability to control and retain the synaptic weight 

over time is defined as synaptic plasticity, classified into two forms: short-term plasticity (STP) and long-term 

plasticity [48–50]. Figure 3d demonstrates that synaptic plasticity, such as LTP and LTD, is further accelerated 

by applying a larger negative VG, corresponding to the consolidation of long-term memory. This behavior 

originates from the effective electric field across the WO3–x layer strengthening as the Schottky barrier at the 

WSe2/graphene junction decreases, resulting in an increasing dynamic variation range of the PSC. Utilizing 

this capability achieved by electrostatic gating, we could even modify the intrinsic type of the synaptic 

plasticity. As shown in Figure 3e, the PSC gradually increases by adjusting the VG to −30 V (right panel), 

while the application of the same input spikes (VA = −1 V, VW = 10 ms, and Δt = 1 s) did not cause a noticeable 

increase in the PSC at VG = 0 V (left panel). This result implies the conversion from STP to LTP, mimicking 

the essential role of a neuromodulator. Notably, gate-induced tuning of the synaptic functionality is controlled 

electrostatically, while considerable electrical power is inevitably consumed to achieve weight tuning by 

amplifying the potential and/or frequency of input spikes from neurons. Furthermore, the ability to accelerate 

the modulation of the synaptic weight can offer potential advantages to improve recognition accuracy and 

reduce the learning time of pattern recognition [51]. 
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3.3. h-BN based memtransistor synaptic devices 

Hexagonal boron nitride (h-BN) based memtransistor synaptic devices are another intriguing avenue in 

the realm of neuromorphic computing. h-BN, similar to WSe2, is a 2D material with a hexagonal lattice 

structure. It exhibits excellent insulating properties and thermal stability, making it a promising candidate for 

various electronic applications, including synaptic devices. For example, Figure 4a, show the schematic image 

of the vdW heterostructure monolithic memtransistor. The electronic synapses of the h-BN-based memristor 

were characterized by applying bias voltage to the Ti/Au top electrode (TE) with the MLG bottom electrode 

(BE) grounded. Figure 4b represents the first (red curve) and successive (gray curves) resistive switching (RS) 

characteristics of the memristor with a 10 nm thick h-BN RS layer. The compliance current (ICOMP) was set 

as 500 µA during the memristive set process to avoid irreversible electrical breakdown of the device. In our 

experiments, an electroforming process was needed in order to initiate the RS, as shown in the inset of Figure 

4b, which indicates that the electrical breakdown of the grain boundary-free h-BN memristor triggers the RS. 

This behavior is different from that of the CVD h-BN-based devices that require no electroforming process 

and show grain boundary-mediated RS behavior [52,53]. All devices with h-BN layers with thicknesses below 

30 nm showed electroforming and RS characteristics, where the electroforming electric field (EEF) decreased 

with increased thickness of h-BN similar to those of SiO2, polyimide [54–56]. The h-BN memristor showed a 

stable RS characteristic over 40 cycles, and the resistance memory window between HRS and LRS maintains 

approximately three orders of magnitude (Figure 4c). Note that a higher HRS/LRS ratio can be achieved by 

setting higher ICOMP during the set process. Figure 4d shows the cumulative probability of HRS and LRS 

Figure 3a. Circuit and schematic representation of diagrams of the synaptic barristor consisting of a vertically integrated 

WO3–x memristor and WSe2/graphene barristor. (b) Gate-tunable-resistive switching characteristics.  ID–VD curves of the 

devices with (red line) and without a WO3–x layer (black line). Insets show a schematic representation of the diagrams of 

the devices. The “SET” and “RESET” processes are indicated by the up and down arrows, respectively. (c) Gate-tunable 

synaptic characteristics. d) Schematic illustration of the synaptic barristor and the corresponding circuit diagram of the 

synaptic barristor. e) Plots of PSC as a function of the number of input spikes while consecutively applying a series of 

potentiating spikes (VA = −4 V, VW = 40 ms, and N = 30) and depressing spikes (VA = 0.5 V, VW = 5 ms, and N = 30) at 

various VG values of 0, −20, and −40 V. e) Plots of PSC as a function of time while applying spikes (VA = −1.0 V, VW = 10 

ms, and Δt =1 s) at VG = 0 V (left panel) and VG = −30 V (right panel). All PSCs are measured at VD = −0.1 V. Reproduced 

with permission[17],.Copyright 2020, Advanced Materials. 
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resistance, showing acceptable resistance variation. The electroforming, hysteretic current–voltage (I–V), and 

LRS and HRS distributions of a h-BN memristor, in which Pt was used as TE, showed completely different 

behaviors from those of a device with Ti contacts. This strongly indicates that the RS of the exfoliated h-BN 

is dependent on the metallic ions diffused from the electrode through the h-BN layer by the applied electrical 

bias. Our novel architecture can provide a higher order of functionality to both logic and memory devices as 

an atomically thin configuration, and thereby be the basis for energy-efficient neuromorphic computing. 

3.4. In2Se3 based memtransistor synaptic devices  

Indium selenide (In2Se3) based memtransistor synaptic devices represent a fascinating frontier in 

neuromorphic computing. In2Se3 is a semiconductor material with unique properties that make it suitable for 

building synaptic devices. In2Se3 ability to undergo phase changes under external stimuli, such as electrical 

pulses, enables the device to exhibit plasticity, akin to the synaptic plasticity observed in biological synapses. 

This plasticity allows for the modification of synaptic weights, crucial for learning and memory functions in 

neuromorphic computing systems. In this context [57], the α-In2Se3 ferroelectric Semiconductor (FES) 

memtransistor configurable multilevel conductance states enable the emulation of the diverse synaptic 

plasticity observed in biological counterparts (Figure 5a). Both VGS and VDS pulses are utilized to mimic 

presynaptic inputs, while IDS is monitored as the postsynaptic current (PSC). Given the significance of linearity 

and symmetry in synaptic weight updates for achieving high accuracy in neural network simulations, we 

investigated these characteristics of the α-In2Se3 FES memtransistor under various VGS and VDS presynaptic 

pulse schemes. Additionally, we assessed the endurance performance of the α-In2Se3 memtransistor by 

extracting LRS and HRS values at VDS = -1 V from the IDS-VDS curves in Figure 5b. To delve into the non-

Figure 4a) Schematic of a MoS2/Multilayer Graphene (MLG)/h-BN programmable memtransistor consisting of memristor 

(left) and transistor (right). b) Typical bipolar resistive switching (RS) curves of first (red curve) and successive (gray) cycles. 

The inset image is the I–V curve that shows the electroforming process. c) Variation of the memristor resistance at HRS and 

LRS (top), and the RHRS/RLRS (bottom) from the initial to multiple programming/erasing cycles. d) Cumulative distribution 

of the LRS and HRS resistance. Reproduced with permission [20]. Copyright 2020, Advanced Electronic Materials. 
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volatile resistance switching performance of the α-In2Se3 memtransistor, we further examined retention and 

endurance. This involved applying set (pulse amplitude: VGS = +2 V, VDS = -1 V, pulse width: 20 s) and reset 

(pulse amplitude: VGS = -2 V, VDS = -1 V, pulse width: 20 s) voltage pulses, and then reading the LRS and HRS 

currents at VDS = -0.1 V and VGS = 0 V, respectively (Figure 5c). It is noted that the HRS and LRS values show 

similar temporary decays, thus the IOn/Off remains relatively unchanged for 500 s. As illustrated in Figure 5d, 

we compared our proposed FES synaptic memtransistor to documented artificial synapses based on the number 

of conductance states and the asymmetry value of synaptic weight updates. Our device achieved an asymmetry 

value of 0.004, outperforming both two-terminal and three-terminal synaptic counterparts. Additionally, 

simulations using an electronic synapse under an amplitude-modulated positive VDS pulse scheme 

demonstrated optimal near-ideal linear and symmetrical conductance parameters (Figure 5e). Consequently, 

ANNs incorporating the artificial synapse achieved impressive accuracies of 93.67%, 96.16%, and 97.76% 

after 40 training epochs for the file type, University of California Irvine (UCI), and Modified National Institute 

of Standards and Technology database (MNIST) datasets, respectively. These findings highlight the advantages 

of α-In2Se3 memtransistor-based synaptic devices in neural networks, offering more configurable near-ideal 

linearity and symmetry, multilevel conductance states, and minimal conductance response variability due to 

ferroelectric (FE) polarization switching in the FES channel. 

 

Figure 5(a) Schematic illustration of biological neurons and synapses (left) and the α-In2Se3 memtransistor-based artificial 

synapse (right). The electrical pulses at gate or drain. b) IDS − VDS curves of α-In2Se3 memtransistor with consecutive 

measurements over a VDS range of −2 to 2 V, at different VGS bias from −10 to 10 V with 2 V step−1, exhibiting wide gate 

tunable conductance states. The inset shows IDS − VDS curves of 30 consecutive VDS sweep cycles measured at VGS = 0 V. 

The direction of VDS sweeps is indicated by arrows and numbers. c) Retention of the high resistance state (HRS) (after VGS 

pulse = −2 V, VDS pulse = −1 V, 20 s) and low resistance state (LRS; after VGS pulse = +2 V, VDS pulse = −1 V, 20 s) currents. 

The HRS and LRS current values were read at VDS = −0.1 V and VGS = 0 V. d) Comparison of asymmetry values of synaptic 

weight update and number of conductance states of α-In2Se3 memtransistor-based synapse with reported counterparts. 

Asymmetry value of 0 indicates perfect symmetric characteristic. e) Cycle-to-cycle variations of programmed conductance 

states in P/D curves for 10 cycles with nonidentical positive VDS pulse scheme. f) The accuracy of α-In2Se3 synapses for 

different pattern recognition based on the conductance parameters in (e). The accuracies after 40 training epochs were 

presented. Reproduced with permission[57]. Copyright 2020, Small. 
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4. Prospects and challenges 

Two-dimensional (2D) materials like MoS₂, WSe₂, h-BN, and In₂Se₃ are at the forefront of advanced 

material science, offering unique prospects and facing substantial challenges. These materials are promising 

for applications in electronics and optoelectronics due to their high electron mobility, tunable bandgaps, and 

mechanical flexibility, enabling the development of ultra-thin, flexible, and high-performance devices. Table 

shows the comparison of advantages and disadvantages of MoS₂, WSe₂, h-BN, and In₂Se₃. In the realm of 

energy, 2D materials are being explored for battery electrodes and solar cells, capitalizing on their high surface 

area and strong light-matter interaction. Additionally, their exceptional properties open new avenues in 

quantum computing and spintronics, particularly with materials like WSe₂ that exhibit strong spin-orbit 

coupling. Hexagonal boron nitride stands out as an excellent insulator and dielectric, making it ideal for 

protective coatings and electronic substrates. 

However, these exciting opportunities come with significant challenges. The scalable and consistent 

synthesis of high-quality 2D materials is still a major hurdle, with issues related to contamination and defects 

during production. Integrating these materials with existing silicon-based technologies requires overcoming 

compatibility and fabrication challenges, while ensuring the environmental stability and long-term reliability 

of 2D material-based devices is essential for their commercial viability. Additionally, a deeper understanding 

of the fundamental properties and interlayer interactions within 2D material heterostructures is necessary to 

fully exploit their potential. Addressing these challenges through continued research and technological 

advancements will be crucial in harnessing the full capabilities of 2D materials for transformative applications 

across various fields. 

The field of 2D material-based neuromorphic computing faces several challenges and holds promising 

prospects. Key challenges include producing high-quality, uniform 2D materials at scale, integrating these 

materials with traditional semiconductor technologies, and ensuring consistent layer control. Creating reliable 

memristors and synaptic devices with stable switching and plasticity using 2D materials remains complex. 

Additionally, efficient thermal management in densely packed neuromorphic circuits is crucial, and ensuring 

long-term durability and consistent performance of these devices is essential. Economic and environmental 

concerns, such as high production costs and the need for sustainable synthesis and disposal methods, also pose 

significant issues. These materials exhibit superior electronic properties, such as high carrier mobility and 

tunable bandgaps, making them suitable for fast and efficient neuromorphic devices. Their ultra-thin, flexible, 

and scalable nature makes them ideal for dense neuromorphic circuits. They also offer potential for low power 

consumption and reduced heat generation. Novel device architectures can be developed by stacking 2D 

materials and leveraging quantum effects. Furthermore, 2D materials can mimic synaptic plasticity and 

neuronal behavior, enhancing adaptive learning capabilities. Ongoing interdisciplinary collaboration and 

increased funding are driving rapid advancements in 2D material-based neuromorphic computing, paving the 

way for innovative solutions that could revolutionize the field. 
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5. Conclusion 

The drive to incorporate advanced synaptic functions into neuromorphic hardware has led to exploration 

of novel multi-terminal memristive devices. These devices, utilizing metal oxides, nanoparticles, nanowires, 

and increasingly 2D materials like MoS2, WSe2, h-BN, and In2Se3, offer rich and tunable synaptic-like 

behaviors. Their atomic-level thickness and tunable electronic properties promise lower energy consumption 

and improved synaptic emulation. Despite these advancements bridging software and hardware in 

neuromorphic engineering, challenges persist in materials, device operation, design, and integration with 

CMOS technologies. However, the examination of memristor devices utilizing 2D materials reveals their 

potential as pivotal components in contemporary electronics. Leveraging the exceptional properties of 2D 

materials such as low power consumption, gate tunability, and compatibility with hetero-integration, they are 

envisioned as promising elements for artificial synaptic devices, crucial for energy-efficient neuromorphic 

computing. These materials enable the implementation of essential synaptic functions and advanced features 

like synaptic learning acceleration and hetero-synaptic cooperation, surpassing the limitations of conventional 

memristors. Specifically, the utilization of 2D materials facilitates the development of artificial synaptic 

devices with low power consumption, essential for future neuromorphic electronics. The atomically thin nature 

of 2D materials reduces operation voltage and leakage current, enhancing energy efficiency. Additionally, the 

uniform surface and vdW interfaces of layered materials enable low supply voltages and fast switching speeds, 

further optimizing performance. Despite challenges in meeting synapse requirements, particularly in achieving 

symmetry and linearity of conductance change, 2D material-based devices offer promising avenues for 

addressing these obstacles and advancing hardware artificial neural networks. 
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Table. Comparison of advantages and disadvantages of the 2D materials which includes as MoS₂ , WSe₂ , h-BN, and In₂ Se₃ . 

Material Properties MoS₂ 
 

WSe₂ 
 

h-BN 
 

In₂Se₃ 
 

Bandgap Direct(monolayer) Tunable Wide Tunable 

Electron Mobility Moderate Lower N/A Moderate 

Photoluminescence Strong (Monolayer) Strong (monolayer) N/A Moderate 

Mechanical Flexibility High Moderate Brittle Moderate 

Thermal conductivity Moderate Moderate High Low 

Chemical Stability High Moderate High low 

Scalability Challenging Challenging Challenging Challenging 

Unique properties High on/off ratio Spin-orbit coupling Insulator, smooth surface Ferroelectricity 

 

 
 


