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ABSTRACT

The corrosion inhibition efficiency of magnesium–aluminum (MgAl) by embedding the noble metals of Ni, Pd, Pt,

Cu, Ag, Au on the surface has been investigated. The importance of the electrical double layer at the interface between a

metal and an acid electrolyte together with its interaction with organic and inorganic molecules to produce initially

electrostatic adsorption are highlighted. The important step in which molecules enable inhibition are production of a

physical barrier where a physical adsorbed barrier of molecules prevent movement near the metal surface or decrease in

metal reactivity where chemisorbed inhibitor molecules stick to active area on the metal surface. In the NMR

spectroscopy, it has been observed the remarkable peaks around metal elements of Ni, Pd, Pt, Cu, Ag, Au through the

doping on the MgAl nanoalloy, however there are some fluctuations in the chemical shielding behaviors of isotropic

and anisotropy attributes. Furthermore, all accounted ∆����
� amounts are very close, which demonstrate the agreement

of the measured specifications by all methodologies and the reliability of the computing values.
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1. Introduction
These days, pigments and dyes are a serious problem that threatens marine ecology. Annihilating water

pollutants by photoactive 2D nanomaterials have indicated promising comparativeness over accessible
photocatalysts[1–3]. The researchers have synthesized cobalt oxide (Co3O4) with graphite carbon nitride
(g-C3N4) to make a Co3O4@g-C3N4 hybrid through a green mechanochemical one-pot synthetic method for
manufacturing effective supercapacitor electrodes and photocatalysts[4].

Many resources are accessible to indicate the application of magnesium (Mg) alloys in different
engineering areas. Although Mg alloys have the highest strength-to-weight ratio among structural alloys,
their balance of characteristics is still the subject of complicated work. Mg alloys have excellent castability,
allowing them to be fabricated as complex shapes via procedures with fast production rates, such as
high-pressure die casting. Moreover, Mg alloys have superior mechanical attributes and higher thermal
conductivity[5–11]. Moreover, density functional theory (DFT) calculation was applied to study the
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hydrolysis behavior of degradable Mg and Mg alloys, resulting in a good explanation of water adsorption
and the stability of the corrosion surface[12–14].

Adsorption involving charged inhibitor species causes a change in the double layer and the potential at
the outer Helmholtz plane, influencing the corrosion rates of both anodic and cathodic reactions. The first
three modes are intimately with adsorption and the double layer the last involves interaction of the inhibitor
molecules and the intermediate products formed during the partial electrochemical reactions, interaction of
the adsorbed intermediates with organic molecules can either inhibit or enhance electrode reaction rate
depending on the stability of the inhibitor-intermediate complex formed[15,16].

In this study, a new concept of Mg–Al nanoalloy doped with noble metals of Ni, Pd, Pt, Cu, Ag, Au for
increasing the corrosion inhibition of the surface is proposed for water remediation such as typical anions
and organics as model pollutants by using CAM-B3LYP/ LANL2DZ theoretical methods. Specifically,
MgAl alloy reacts with water to produce Mg2+, Al3+, Ni2+, Cuo, and OH− which further adsorbs organic
pollutants and other potential secondary pollutants.

2. Designing materials and approaches
2.1. Noble metals & corrosion resistance

The non-heat manageable alloys have the larger corrosion persistence against common corrosion
compared to the heat manageable alloys. Nevertheless, the alloys possessing the Al–Mg2Si system also
display notable persistence to usual corrosion process. The identical manner is seen for the alloys that do not
consist of Cu in Al–Zn–Mg. The alloys’ persistence to pitting corrosion process enhances largely with
enhancement of cleanliness[17]. Mg–Al alloys can be doped with some elements consisting of Ni, Pd, Pt, Cu,
Ag, Au (Figure 1).

Mg-Al doped with TM TM@Mg-Al

H
2
O

H
2
O-TM@Mg-Al

Figure 1.Modeling of noble metals (TM) including Ni, Pd, Pt, Cu, Ag, Au doped on the Mg–Al surface in water
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The charge distribution of Mg–Al, Ni@MgAl, Pd@MgAl, Pt@MgAl, Cu@MgAl, Ag@MgAl, and
Au@MgAl is calculated due to the Bader charge analysis[18].

2.3. DFT calculations
Our computations have been carried out due to the conceptual density functional theory or DFT[19–21].

Considering the thermal conductivity compared to local density functionals, PBE does not over attach
structures, and therefore the interatomic force constants are not too flexible[22]. Hohenberg-Kohn (HK)
functions have rigidly made the electronic density permissible as fundamental variable to electronic and
structure computations. In other words, development of the applied DFT methodology only became notable
after W. Kohn and L. J. Sham released their reputable series of equations which are introduced as
Kohn-Sham (KS) equations[23,24]. Considering the electronic density within the KS image directs us to a
remarkable reduction of quantum computing. Thus, the KS methodology lightens the route for pursuing
systems that cannot be discussed by conventional ab-initio methodologies. Kohn and Sham" introduces the
solution which brings up the mono-electronic orbitals to account the kinetic energy in a simple and relatively
exact, by founding a residual modification that might be computed apart[23,24]. Therefore, the precise
exchange energy functional is described by the Kohn–Sham orbitals in lieu of the density which is cited as
the indirect density functional. This research has employed the penetration of the hybrid functional of
three-parameter basis set of B3LYP within the conception of DFT upon theoretical computations[25–30].

In this article, the rigid PES using DFT calculations have been accomplished by using Gaussian 16
revision C.01 program package[31]. The input Z-matrix for Mg–Al nanoalloy doped with noble metals of Ni,
Pd, Pt, Cu, Ag, Au have been provided with GaussView 6.1[32] due to the rigid system and coordination
format of which a blank line has been cited and using LANL2DZ basis set to distinguish chemical shielding,
frequencies, thermodynamic properties, electrostatic and electronic potential, natural atomic charges,
projected density of state and other quantum properties for this work. In our previous works, it has been
accomplished application of DFT calculations through materials modelling[33–52].

3. Results and discussion
3.1. Insight to nuclear quadrupole resonance (NQR)

As the EFG at the citation of the nucleus in N-heterocycles is allocated by the valence electrons twisted
in the attachment with close nuclei of TMs–doped Mg–Al nanoalloy, the NQR frequency at which
transitions occur is particular for TMs@Mg–Al complex (Suppl.1). NQR is a straight frame of the
interaction of the quadrupole moment with the EFG which is produced by the electronic structure of its
ambiance. Therefore, the NQR transition frequencies are symmetric to the electric quadrupole moment of the
nucleus and a measurement of the strength of the local EFG[53–56].

In this research work, the electric potential as the quantity of work energy through carrying over the
electric charge from one position to another position in the essence of electric field has been evaluated for
Ni@MgAl, Pd@MgAl, Pt@MgAl, Cu@MgAl, Ag@MgAl, Au@MgAl, complexes using CAM-B3LYP/
LANL2DZ level of theory (Suppl.1). Furthermore, in Figure 3 (a–f), it has been sketched the electric
potential of nuclear quadrupole resonance for some atoms of aluminum, magnesium, nickel, palladium,
platinum, copper, silver, and gold in the doping site on the MgAl alloy surface which has been calculated by
CAM–B3LYP/ LANL2DZ.
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Figure 3. Electric potential (a.u.) versus Bader charge (e) through NQR calculation for the (Ni, Pd, Pt, Cu, Ag, Au)–doped MgAl
alloy surface by CAM-B3LYP/LANL2DZ

In Figure 3 (a–f), it has been described the influence of the replacement of aluminum metal elements in
MgAl surface with noble metals of Ni, Pd, Pt, Cu, Ag, Au. However, Figure 3b has indicated a sharp
minimum in the value of electric potential (Ep) around –16.2215 a.u. for doping of Pd on the MgAl nanoalloy
surface (Pd@MgAl) which can affirm more affinity for electron accepting encountering electron donating
compounds.

3.2. Analysis of NMR
From the DFT calculations, it has been attained the chemical shielding (CS) tensors in the principal axes

system to estimate the isotropic chemical-shielding (CSI) and anisotropic chemical-shielding (CSA)[57]. The
NMR data of isotropic (σiso), anisotropic shielding tensor (σaniso) and Bader charge (Q/e) of noble metals
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doping of MgAl consisting of Ni@MgAl, Pd@MgAl, Pt@MgAl, Cu@MgAl, Ag@MgAl, Au@MgAl have
been computed by Gaussian 16 revision C.01 program package[31] and been shown in Suppl.2. Furthermore,
Figure 4 has exhibited the same tendency of shielding for magnesium and aluminum however a considerable
deviation from noble metals of nickel (Figure4a), palladium (Figure4b), platinum (Figure4c), copper
(Figure4d), silver (Figure4),and gold(Figure4f).

Figure 4. The NMR spectrums for noble metals of Ni, Pd, Pt, Cu, Ag, Au doped on the MgAl nanoalloy surface towards forming
complexes of a) Ni@MgAl, b) Pd@MgAl, c) Pt@MgAl, d) Cu@MgAl, e) Ag@MgAl and f) Au@MgAl using
CAM-B3LYP/LANL2DZ

In Figure 4 (a-f), noble metal atoms of Ni, Pd, Pt, Cu, Ag, Au in the complexes of Ni@MgAl
(Figure4a), Pd@MgAl (Figure4b), Pt@MgAl (Figure4c), Cu@MgAl (Figure4d), Ag@MgAl (Figure4e), and
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Au@MgAl (Figure4e) denote the fluctuation in the chemical shielding. In fact, Figure 4 (a-f) indicates that
the gap chemical shielding between magnesium/aluminum in MgAl nanoalloy surface and noble metals.

3.3. IR analysis
The IR calculations have been accomplished for doping of metal elements of Ni, Pd, Pt, Cu, Ag, Au on

the MgAl nanoalloy surface. Therefore, it has been simulated the several clusters containing

Ni@MgAl (Figure5a), Pd@MgAl (Figure5b), Pt@MgAl (Figure5c), Cu@MgAl (Figure5d),
Ag@MgAl (Figure5e), and Au@MgAl (Figure5e).

Figure 5. The Frequency (cm-1) changes through the IR spectrums for a) Ni@MgAl, b) Pd@MgAl, c) Pt@MgAl, d) Cu@MgAl, e)
Ag@MgAl, and f) Au@MgAl complexes

The spectrum of Figure4 (a) is seen in the frequency range between 1500– 3500 cm-1 for Ni@MgAl
around 1794.16 cm-1. Figure4 (b) exhibits the frequency range between 1000– 3500 cm-1 for Pd@MgAl
around 1393.84 cm-1. Figure4 (c) shows the frequency between 1000–4000 cm-1 for Pt@MgAl around
1337.17 cm-1. Figure4 (d) demonstrates the frequency between 1500–3500 cm-1 for Cu@MgAl around
1791.09 cm-1. Moreover, it is seen the frequency between 1500-4500 for Ag@MgAl around 2110.85 cm-1

(Figure4e). Besides, Figure (4f) illustrates the frequency between 1500-4500 for Au@MgAl around 2110.85
cm-1. Table 1 through the thermodynamic specifications concluded that doped MgAl nanoalloy with noble
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metals including Ni, Pd, Pt, Cu, Ag, Au might be more efficient for adsorbing water pollutant due to an
adsorption approach.

Table 1. The thermodynamic characters of (Ni,Pd,Pt,Cu,Ag,Au)@MgAl nanosurface usingCAM-B3LYP/LANL2DZ calculation.

Compound
∆Eo×10-4

(kcal/mol)
∆Ho×10-4

(kcal/mol)
∆Go×10-4

(kcal/mol)
So

(cal/K.mol)
Dipole moment

(Debye)
Ni@MgAl -244.8328 -244.8328 -244.8350 74.120 0.0800

Pd@MgAl -453.9386 -453.9386 -453.9410 75.724 0.2688

Pt@MgAl -627.3778 -67.3777 -627.3800 76.488 0.3491

Cu@MgAl -253.0143 -253.0142 -253.0166 79.123 0.0682

Ag@MgAl -474.1482 -474.1482 -474.1505 77.910 0.1394

Au@MgAl -642.3836 -642.3836 -642.3971 77.810 0.4853

The thermodynamic data in Figure 6 could detect the maximum efficiency of corrosion resistance for
doping of MgAl nanoalloy with Ni, Pd, Pt, Cu, Ag, Au through ∆Hdop

� which depends on the covalent bond
between noble metals and MgAl.

Figure 6. Heat of formation ( ∆�f
� ) for doping of MgAl with noble metals (X= Ni, Pd, Pt, Cu, Ag, Au) nanoalloy surfaces

The doping process of noble metal on the MgAl nanoalloy surface is affirmed by the ∆�dop
� quantities:

∆�dop
� = ∆�X@MgAl

� − ∆�X−doped
� + ∆�MgAl

� ; X = Ni, Pd, Pt, Cu, Ag, Au.

4. Conclusion
The efficiency of corrosion inhibition for TM@MgAl has been investigated through the electromagnetic

and thermoelectric traits extracts from NMR, NQR, and IR analysis which have been accomplished on
Ni@MgAl, Pd@MgAl, Pt@MgAl, Cu@MgAl, Ag@MgAl, Au@MgAl complexes. Examining for corrosion in
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the existence of water is also carried out to determine how the presence of water affects the process. In some
cases, a chemical bond is formed involving charge transfer or charge sharing between the metal surface and
inhibitor molecules forming a coordinate bond through lone-pair electrons on heteroatoms or π electrons on
inhibitors with multiple and aromatic bonds.
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Suppl.1. The electric potential (au) and Bader charge (e) through NQR calculation for (Ni/Pd/Pt,Cu/Ag/Au)@Mg–Al nanosurface

using CAM-B3LYP/LANL2DZ calculation.

Ni@Mg–Al Pd Mg–Al Pt Mg–Al

Atom Q Ep Atom Q Ep Atom Q Ep

Al1 0.01 –43.72 Al1 0.46 –0.95 Al1 0.82 –0.94

Mg2 0.93 –38.78 Mg2 –3.25 0.38 Mg2 –5.36 0.47

Al3 –0.41 –43.63 Al3 4.09 –0.67 Al3 3.11 –0.65

Mg4 0.48 –39.00 Mg4 –3.00 –0.00 Mg4 –1.64 0.00

Al5 0.01 –43.72 Al5 1.45 –0.95 Al5 0.82 –0.94

Mg6 0.93 –38.78 Mg6 –3.18 0.38 Mg6 –5.34 0.46

Ni7 –2.33 –127.02 Pd7 –0.61 –16.22 Pt7 8.76 –14.59

Mg8 0.87 –38.77 Mg8 –5.33 0.41 Mg8 –8.33 0.50

Al9 –0.28 –43.57 Al9 3.66 –0.69 Al9 2.85 –0.68

Al10 –0.41 –43.64 Al10 4.06 –0.67 Al10 3.11 –0.66

Mg11 0.48 –39.00 Mg11 –3.02 –0.00 Mg11 –1.66 0.00

Al12 –0.28 –43.57 Al12 3.67 –0.69 Al12 2.86 –0.68

Cu Mg–Al Ag Mg–Al Au Mg–Al

Atom Q Ep Atom Q Ep Atom Q Ep

Al1 0.04 –43.75 Al1 –0.02 –43.72 Al1 0.81 –0.93

Mg2 0.71 –38.79 Mg2 0.75 –38.74 Mg2 –5.41 0.53

Al3 –0.38 –43.58 Al3 –0.32 –43.63 Al3 2.93 –0.68

Mg4 0.48 –38.97 Mg4 0.51 –39.00 Mg4 –1.23 –0.00

Al5 0.04 –43.75 Al5 –0.03 –43.72 Al5 0.81 –0.93

Mg6 0.71 –38.79 Mg6 0.75 –38.75 Mg6 –5.39 0.52

Cu7 –1.84 –260.55 Ag7 –1.87 –133.42 Au7 8.52 –15.60

Mg8 0.65 –38.74 Mg8 0.80 –38.72 Mg8 –8.47 0.56

Al9 –0.26 –43.62 Al9 –0.37 –43.58 Al9 2.86 –0.66

Al10 –0.38 –43.58 Al10 –0.32 –43.63 Al10 2.93 –0.68

Mg11 0.49 –38.98 Mg11 0.51 –39.00 Mg11 –1.26 –0.00

Al12 –0.26 –43.62 Al12 –0.37 –43.58 Al12 2.87 –0.66

Al1 0.04 –43.75 Al1 –0.02 –43.72 Al1 0.81 –0.93
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Suppl.2. Data of NMR shielding tensors for selected atoms of (Ni,Pd,Pt,Cu,Ag,Au)@ MgAl nanosurface using CAM-

B3LYP/LANL2DZ calculation.

Ni@MgAl Pd@MgAl Pt@MgAl

Atom σiso σaniso Atom σiso σaniso Atom σiso σaniso

Al1 129.50 4308.75 Al1 254.00 395.99 Al1 361.47 622.46

Mg2 1396.53 1397.03 Mg2 353.45 686.03 Mg2 474.82 876.99

Al3 1448.07 1185.23 Al3 177.07 349.88 Al3 234.53 427.58

Mg4 733.60 1043.41 Mg4 133.41 231.96 Mg4 159.06 268.63

Al5 65.34 4139.96 Al5 248.51 375.12 Al5 354.22 597.72

Mg6 1373.49 1274.30 Mg6 351.53 686.92 Mg6 472.35 878.02

Ni7 3069.06 15618.11 Pd7 471.59 890.51 Pt7 655.70 1198.03

Mg8 1451.45 1266.72 Mg8 326.90 671.61 Mg8 432.90 865.60

Al9 443.80 3165.94 Al9 202.77 261.00 Al9 266.12 290.82

Al10 1453.17 1192.18 Al10 175.80 349.86 Al10 232.85 427.11

Mg11 751.841 967.03 Mg11 136.49 227.19 Mg11 162.04 263.51

Al12 403.60 2999.65 Al12 206.62 256.15 Al12 271.11 284.60

Cu@MgAl Ag@MgAl Au@MgAl

Atom σiso σaniso Atom σiso σaniso Atom σiso σaniso

Al1 224.72 1436.10 Al1 436.08 1134.00 Al1 5.73 61.53

Mg2 612.43 128.07 Mg2 739.49 364.12 Mg2 33.32 138.91

Al3 1119.08 321.45 Al3 563.33 632.45 Al3 15.91 73.90

Mg4 827.35 827.35 Mg4 893.63 249.31 Mg4 0.45 47.47

Al5 231.54 1423.72 Al5 464.89 1095.14 Al5 3.06 62.73

Mg6 610.44 126.85 Mg6 738.08 363.50 Mg6 33.24 135.54

Cu7 1599.30 1550.61 Ag7 4153.47 800.70 Au7 130.84 120.29

Mg8 790.99 416.94 Mg8 432.80 480.68 Mg8 26.71 108.86

Al9 586.23 823.97 Al9 834.82 441.50 Al9 4.35 50.65

Al10 1117.77 326.76 Al10 557.53 633.34 Al10 16.56 72.75

Mg11 835.35 544.10 Mg11 917.62 223.14 Mg11 2.50 45.16

Al12 583.76 826.41 Al12 824.07 458.26 Al12 5.05 47.75
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