The impact of Bismuth Ion on the physical and optical characteristics of borate glasses
Bhupendra Patankar
Department of Physics, Madhyanchal Professional University
Ghizal F. Ansari
Department of Physics, Madhyanchal Professional University
Sukhdev Bairagi
Department of Physics, Sardar Vallabhbhai Patel Govt. College
DOI: https://doi.org/10.59429/mi.v2i1.6289
Keywords: borate glass; tauc’s plot; urbach energy; forbidden energy gap
Abstract
The bismuth doped borate (Bi2O3–B2O3) glasses were made using the melt quench process. The physico-optical characteristics, including their molar and density of the specimens were examined. The density readings were obtained using the Archimedes principle. The X-Ray differ actogram was used to verify that the specimens are amorphous. Using Tauc's approach, the optical characteristics of the specimens, including their direct and indirect forbidden energy gaps, were computed. The Urbach energy and steepness of the glass system were calculated to determine its disorderliness. The effect of Bi on physical and optical properties as density, poleron radius, forbidden energy gap, refractive index etc, were observed. The metallization criteria were used to examine the materials' non-metallic character.
References
1. Khattak GD, Tabet N, Wenger LE. Structural properties of glasses in the series ( Sr O ) x ( V 2 O 5 ) 1 − x , ( Sr O ) 0.5 − y ( B 2 O 3 ) y ( V 2 O 5 ) 0.5 , and ( Sr O ) 0.2 ( B 2 O 3 ) z ( V 2 O 5 ) 0.8 − z. Phys Rev B 2005;72:104203. https://doi.org/10.1103/PhysRevB.72.104203.2. Murugavel S, Roling B. Ion transport mechanism in borate glasses: Influence of network structure on non-Arrhenius conductivity. Phys Rev B 2007; 76:180202. https://doi.org/10.1103/PhysRevB.76.180202.
3. Rajyasree Ch, Rao DK. Spectroscopic investigations on alkali earth bismuth borate glasses doped with CuO. Journal of Non-Crystalline Solids 2011; 357:836–41. https://doi.org/10.1016/j.jnoncrysol.2010.11.008.
4. Sharma G, Thind KS, Monika, Singh H, Manupriya, Gerward L. Optical properties of heavy metal oxide glasses before and after g‐irradiation. Physica Status Solidi (a) 2007; 204:591–601. https://doi.org/10.1002/pssa. 200622124.
5. Limkitjaroenporn P, Kaewkhao J, Tuscharoen S, Limsuwan P, Chewpraditkul W. Structural Studies of Lead Sodium Borate Glasses. AMR 2010; 93–94:439–42. https://doi.org/10.4028/www.scientific.net/AMR.93-94.439.
6. Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of Applied Physics 1996; 79:1736–40. https://doi.org/10.1063/1.360962.
7. Ihara R, Benino Y, Fujiwara T, Komatsu T. Surface crystallization and second-order optical non-linearity in Gd 2 O 3 –Bi 2 O 3 –B 2 O 3 glasses. Science and Technology of Advanced Materials 2005; 6:138–42. https://doi.org/10.1016/j.stam.2004.11.005.
8. Deparis O, Mezzapesa FP, Corbari C, Kazansky PG, Sakaguchi K. Origin and enhancement of the second-order non-linear optical susceptibility induced in bismuth borate glasses by thermal poling. Journal of Non-Crystalline Solids 2005; 351:2166–77. https://doi.org/10.1016/j.jnoncrysol.2005.06.004.
9. Gomes ASL, Falcão Filho EL, De Araújo CB, Rativa D, De Araujo RE, Sakaguchi K, et al. Third-order nonlinear optical properties of bismuth-borate glasses measured by conventional and thermally managed eclipse Z scan. Journal of Applied Physics 2007; 101:033115. https://doi.org/10.1063/1.2434940.
10. Insitipong S, Kaewkhao J, Ratana T, Limsuwan P. Optical and structural investigation of bismuth borate glasses doped with dy3+. Procedia Engineering 2011; 8:195–9. https://doi.org/10.1016/j.proeng.2011.03.036.
11. Swapna K. Sk. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, L. Rama Moorthy. J. Lumin. 2013; 139:119.
12. Swapna K, MahamudaSk, Rao AS, Sasikala T, Packiyaraj P, Moorthy LR, et al. Luminescence characterization of Eu 3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications. Journal of Luminescence 2014; 156:80–6. https://doi.org/10.1016/j.jlumin.2014.07.022.
13. Swapna K, MahamudaSk, Rao AS, Jayasimhadri M, Shakya S, Prakash GV. Tb 3+ doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices. Journal of Luminescence 2014; 156:180–7. https://doi.org/10.1016/j.jlumin.2014.08.019.
14. Singla S, Achanta VG, Mahendru N, Prabhu SS, Falconieri M, Sharma G. High refractive index gold nanoparticle doped Bi2O3-B2O3 glasses for THz frequencies. Optical Materials 2017; 72:91–7. https://doi.org/10.1016/j.optmat.2017.05.043.
15. Munisudhakar B, Nageswara Raju C, Reddi Babu M, Reddy NM, Rama Moorthy L. Luminescence characteristics of Nd3+ doped bismuth borate glasses for photonic applications. Materials Today: Proceedings 2020; 26:5–10. https://doi.org/10.1016/j.matpr.2019.05.349.
16. Hall DW, Newhouse MA, Borrelli NF, Dumbaugh WH, Weidman DL. Nonlinear optical susceptibilities of high-index glasses. Applied Physics Letters 1989; 54:1293–5. https://doi.org/10.1063/1.100697.
17. Stehle C, Vira C, Hogan D, Feller S, Affatigato M. Optical and physical properties of bismuth borate glasses related to structure. Physics and chemistry of glasses. 1998 Apr 1; 39(2):83-6.
18. George HB, Vira C, Stehle C, Meyer J, Evers S, Hogan D, Feller S, Affatigato M. A structural analysis of the physical properties of bismuth and lead based glasses. Physics and chemistry of glasses. 1999 Dec 1; 40(6):326-32.
19. Terashima K, Shimoto TH, Yoko T. Structure and nonlinear optical properties of PbO-Bi2O3-B2O3 glasses. Physics and chemistry of glasses. 1997; 38(4):211-7.
20. Ansari GF, Patidar S, Pandey R, Kumar R. Physical and Optical Properties of Lead-Tungsten-Tellurite Glasses. MSF 2023; 1097:71–6. https://doi.org/10.4028/p-L9t2vI.
21. Rezaul Karim S, Khan S, Ansari GF, Mishra D, Kumar S, Ashiq M. X-ray attenuation performance of a newly synthesized tellurium based lead-free radiation shielding glass system. Radiation Physics and Chemistry 2024; 216:111477. https://doi.org/10.1016/j.radphyschem.2023.111477.
22. Azuraida A, Halimah MK, Sidek AA, Azurahanim CA, Iskandar SM, Ishak M, Nurazlin A. Comparative studies of bismuth and barium boro-tellurite glass system: structural and optical properties. Chalcogenide Lett. 2015 Oct 1; 12(10):497-503.
23. Umar SA, Halimah MK, Chan KT, Latif AA. Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. Journal of Non-Crystalline Solids 2017; 472:31–8. https://doi.org/10.1016/j.jnoncrysol.2017.07.013.
24. Davis EA, Mott NF. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine 1970; 22:0903–22. https://doi.org/10.1080/14786437008221061.
25. Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical review. 1953 Dec 1; 92(5):1324.
26. Jat S, Sharma RK, Mahajan SK, Ashiq M, Ansari GF. Synthesis and optical properties of ternary TeO2-Bi2O3-Na2O glass system. Materials Today: Proceedings 2021; 42:1329–32. https://doi.org/10.1016/j.matpr.2020.12.1188.
27. Fares H, Elhouichet H, Gelloz B, Férid M. Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: Effect of heat treatment. Journal of Applied Physics 2014; 116:123504. https://doi.org/10.1063/1.4896363.