Effect of Ti3C2-MXene size on cell viability of human carcinoma cells
Tianyi Dong
Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
Ming Qi
Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
Shuxia Ji
Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
Kailin Liu
Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
Peng Shi
Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
Chong Geng
Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
DOI: https://doi.org/10.59429/mi.v2i1.6307
Keywords: MXene; biological toxicity; human breast carcinoma cells; human thyroid carcinoma cells
Abstract
MXene nanoflakes, a new type of transition metal carbides, nitrides, and carbonitrides (named as MXene) have emerged as biocompatible transition metal structures, which illustrate desirable performance for various applications due to their unique physicochemical, and compositional virtues. MXenes are currently expanding their application from optical, chemical, electronic, and mechanical fields towards biomedical areas. In terms of biomedical applications, the biological toxicity of MXenes materials in different forms must be considered inevitably. In this paper, Ti3C2-MXene nanoflakes with different sizes have been prepared by means of wet etching method combined with powerful ultrasonication for exploring the effect in human breast carcinoma cells (MDA-MB-231 Cells) and human thyroid carcinoma cells (GLAG-66 Cells). Clinically representative MDA-MB-231 Cells and GLAG-66 Cells are selected as experimental subjects and their biotoxicities are characterized when exposed to Ti3C2-MXene nanoflakes with different sizes and concentrations. The results show that Ti3C2-MXene nanoflakes with sizes below 200 nm is almost non-toxic to MDA-MB-231 Cells and GLAG-66 Cells at low concentrations, and enhance their bioactivity and proliferation. When the nanoflake size is above 200 nm, Ti3C2-MXene has a significant inhibitory effect on the proliferation of the cells. This phenomenon may be due to the different roles of Ti3C2-MXene materials at different scales in cell proliferation as well as in complex physiological processes. This result is of great significance for material screening and design before biological experiments using Ti3C2-MXene.
References
1. Xing, Z.; Chang, Y.; Kang, I. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Sci. Technol. Adv. Mater. 2010, 11, 014101.2. Juan, L.; Vivero, E.; Huang, Y. Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications. Int. J. Mol. Sci. 2011, 12, 3888-3927.
3. Hong Liu, Huazhang Guo, Yibin Fang, Liang Wang, and Peng Li, Rational Design of Nitrogen-Doped Carbon Dots for Inhibiting b-Amyloid Aggregation, Molecules, 2022, 28, 1451.
4. Weitao Li , Luoman Zhang, Ningjia Jiang, Yongqian Chen, Jie Gao, Jihang Zhang, Baoshuo Yang, and Jialin Liu, Fabrication of Orange Fluorescent Boron-Doped Graphene Quantum Dots for Al3+ Ion Detection, Molecules, 2022, 27, 6771.
5. Joanna, J.; Adrian, C.; Magdalena, B.; Marcin, G.; Ludwika, L. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications. Nanomater. 2020, 10, 1846.
6. Govindasamy, R.; Zhang, X.; Thandapani, G.; Wang, S.; Mohammad, A.; Govindarasu, M.; Gnanasundaram, N.; Mohammad, A.; Ill-Min, C. Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes 2020, 8, 355.
7. Faiz, U. S.; Sergei, G.; Oleg, N. A. Boron in Tribology: From Borates to Ionic Liquids. Tribol. Lett. 2013, 51, 281–301.
8. Fan, Y.; Sun, W. J.; Shi. X. Y. Design and Biomedical Applications of Poly (amidoamine)-Dendrimer-Based Hybrid Nanoarchitectures. Small Methods 2017, 11, 1700220.
9. Jalal, A.; Parshant, K.; Vijay, K. S.; Zdenek, S. Surface Functionalization of 2D Transition Metal Oxides and Dichalcogenides via Covalent and Non-covalent Bonding for Sustainable Energy and Biomedical Applications. ACS Appl. Nano Mater. 2020, 3, 3116–3143.
10. Abdulhadee, Y.; Chanika, P.; Weena, S.; Orawon. C. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications. Sensors 2015, 15, 21427-21477.
11. Qian, X. Q.; Gu, Z.; Chen. Y.; Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz. 2017, 4, 800-816.
12. Zhang, H.; Liu, J.; Tian, Z.; Ye, Y.; Cai, Y.; Liang, C.; Kazuya, T. A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. Carbon 2016, 100, 590-599.
13. Vogel, A.; Noack, J.; Hüttman, G.; Paltauf, G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 2005, 81, 1015–1047.
14. Juliette, S.; Emmanuel, F.; Muriel, G. Overview of carbon nanotubes for biomedical applications. Materials 2019, 12, 624.
15. Neves, V.; Heister, E.; Costa, S.; Tîlmaciu, C.; Flahaut, E.; Soula, B.; Coley, H.M.; McFadden, J.; Silva, S.R.P. Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology 2012, 23, 365102.
16. Faisal Shahzad, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, Yury Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353, 1137-1140.
17. Yongchang Dong, Sergii Chertopalov, Kathleen Maleski, Babak Anasori, Longyu Hu, Sriparna Bhattacharya, Apparao M. Rao, Yury Gogotsi, Vadym N. Mochalin, and Ramakrishna Podila, Advanced Materials, 2018, 30 1705714.
18. Feng Pan, Shuang Wang, Zhipeng Yong, Xiaodong Wang, Chenglong Li, Dan Liang, Xiaorui Wang, Han Sun, Yinghe Cui and Zhe Wang, An All-Solid-State Flexible Supercapacitor Based on MXene/MSA Ionogel and Polyaniline Electrode with Wide Temperature Range, High Stability, and High Energy Density, Molecules, 2023, 28, 1554.
19. Yasuaki, O.; Natha, K.; James, M.; Goff; Shin’ichi, H.; Kosuke, H.; Ismaila, N. MXene Electrode Materials for Electrochemical Energy Storage: First-Principles and Grand Canonical Monte Carlo Simulations. MRS Advances 2019, 4, 1833–1841.
20. Michael, N.; Vadym, N. M.; Michel, W. B.; Yury, G. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992-1005.
21. Shahzad, F.; Iqbal, A.; Kim, H.; Koo, C. M. 2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Adv. Mater. 2020, 32, 2002159.
22. Persson; POA; Rosen, J. Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr. Opin. Solid St. M. 2019, 23, 100774.
23. Anita, R.; Joanna, M.; Aleksandra, S.; Michał, C.; Jarosław, W.; Mateusz, P.; Tomasz, W.; Alexey, S. V.; Agnieszka, M. J. Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials 2020, 13, 2347.
24. Błażej, S.; Jacek, K. W.; Magdalena, S.; Barbara, P.; Marcin, J.; Grzegorz, N.; Łucja, P. Cytotoxicity Assessment of Ti–Al–C Based MAX Phases and Ti3C2Tx MXenes on Human Fibroblasts and Cervical Cancer Cells. ACS Biomater. Sci. Eng. 2019, 5, 6557–6569.
25. Jastrzębska, A. M.; Scheibe, B.; Szuplewska, A.; Rozmysłowska-Wojciechowska, A.; Chudy, M.; Aparicio, C.; Scheibe, M.; Janica, I.; Ciesielski, A.; Otyepka, M.; Barsoum, M. W. On the rapid in situ oxidation of two-dimensional V2CTz MXene in culture cell media and their cytotoxicity. Mater. Sci. Eng. C 2021, 119, 111431.
26. Jastrzębska, A. M.; Szuplewska, A.; Rozmysłowska-Wojciechowska, A.; Chudy, M.; Olszyna, A.; Birowska, M.; Popielski, M.; Majewski, J. A.; Scheibe, B.; Natu, V.; Barsoum, M. W. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Mater. 2020, 7, 025018.
27. Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J.; Du, S. Y.; Huang, Q.; Zhi, C. Y. Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging. Adv. Mater. 2017, 29, 1604847.
28. Wu, Q.; Li, N. B.; Wang, Y.; Xu, Y.C.; Wu, J. D.; Jia, G. R.; Ji, F. J.; Fang, X. D.; Chen, F. F.; Cui, X. Q. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti3C2‑MXene Nanosheets. Anal. Chem. 2020, 92, 3354.
29. Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, Freddie Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J Clin, 2021, 71, 209-249.
30. Tiantian Tan, Jie Li, Ruhua Luo, Rongrong Wang, Liyan Yin, Mengmeng Liu, Yiying Zeng, Zhaowu Zeng, Tian Xie, Recent Advances in Understanding the Mechanisms of Elemene in Reversing Drug Resistance in Tumor Cells: A Review, Molecules, 2021, 24, 5792.
31. Edgar Pérez-Herrero, Alberto Fernández-Medarde, Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy, Eur J Pharm Biopharm, 2015, 93, 52-79.
32. Chen-Yang Zhao, Rui Cheng, Zhe Yang, Zhong-Min Tian, Nanotechnology for Cancer Therapy Based on Chemotherapy, Molecules, 2018, 23, 826.
33. Lianjie Ye, Larwubah Kollie, Xing Liu, Wei Guo, Xiangxian Ying, Jun Zhu, Shengjie Yang, Meilan Yu, Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles, Molecules, 2021, 26, 3252.
34. Luisa Sonntag, Juliane Simmchen, Veronika Magdanz, Nano-and Micromotors Designed for Cancer Therapy, Molecules, 2019, 24, 3410.
35. Omid Akhavan 1, Elham Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS nano, 2010, 4, 5731.