Applying the first principle to study the structure, electrical and magnetic properties of ASiNRs-doped Neodymium
Thanh Tung Nguyen
Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Vietnam
Thanh Xuan
Science Office, Thu Dau Mot University, Vietnam
DOI: https://doi.org/10.59429/mi.v2i1.6308
Keywords: Nd adsorption SiNRs; spintronic material; optoelectronic material
Abstract
In this project, we investigated and investigated the optimal sites in the chemisorption of Neodymium (Nd) on armchair silicene nanoribbons (ASiNRs) to learn about the geometrical and electronic properties of the structures by applying these properties with first principle math. The survey has three steps. The first was to change the top, valley, bridge, and hollow positions to find optimazed positionThe results show that the Bridge position has the lowest absorbed energy value of -2.6eV, has the most stable structure, with the strongest magnetic moment of 4.68 μB, and a buckl degree of 0.69 Å; The Si-Si-Si bond angle at this time is 115053’ almost like the pristine case. The second was to change the Si-Si bondlength of ASiNRs the same purpose. Finally, we survey the distance from Nd atom to pristine adsorbent surface was decreased. The calculation results show that the valley position is the most ideal location, corresponding to the bond length of 2.26 Å and the optimal height of 2.11 Å resulting in a single material adsorption system for the new materials, different from other positions with bandgap changed. This result shows that the absorption method between metals and pristine semiconductor ASiNRs has opened up a very good direction, contributing to enriching the source of materials applied to the field of manufacturing electronic, optoelectronic, and spintronic components in the future.
References
1. Boubekeur Lalmi, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara, Sébastien Vizzini et al, Epitaxial growth of a silicene sheet, Applied physics letters, 2010, 97 (22): 223109. http://link.aip.org/link/doi/10.1063/1.3524215?ver=pdfcov2. Kyozaburo Takeda and Kenji Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys Rev B, Vol 50, 20, 1994, https://doi.org/10.1103/PhysRevB.50.14916
3. Takeda K and Shiraishi K, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B. 50, 14916-22, 1994. https://doi.org/10.1103/PhysRevB.50.14916
4. Mathew J. Cherukara, Badri Narayanan, Henry Chan, Subramanian K.R.S. Sankaranarayanan, Silicene growth through island migration and coalescence, Nanoscale, 2017,9, 10186-10192, https://doi.org/10.1039/C7NR03153J
5. Cherukara M J, Narayanan B, Chan H, and Sankaranarayanan S K R S, Silicene growth through island migration and coalescence, Nanoscale. 9, 10186-92, 2017. https://doi.org/10.1039/C7NR03153J
6. Tang C, Oppenheim T, Tung V C and Martini A, Structure–stability relationships for graphene- wrapped fullerene-coated carbon nanotubes, Carbon. 61, 458–66, 2013. http://dx.doi.org/10.1016/j.carbon.2013.04.103
7. Sadeddine S et al., Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer, Sci. Rep. 7, 44400, 2017. https://doi.org/10.1038/srep44400
8. Gogotsi Y and Anasori B, The rise of Mxenes, ACS Nano. 13, 84914, 2019. https://doi.org/10.1021/acsnano.9b06394
9. Lima M P, Fazzio A and Silva A J R da, Silicene-based FET for logical technology, IEEE Electron Device Lett. 39, 1258–61, 2018. https://doi.org/10.1149/2162-8777/abd09a
10. Aghaei S M, Monshi M M and Calizo I, A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor, RSC Adv. 6, 94417–28, 2016. https://doi.org/10.1039/C6RA21293J
11. Galashev A Y and Ivanichkina K A, Silicene anodes for lithium – ion batteries on metal substrates, J. Electrochem. Soc. 167, 50510, 2020. http://dx.doi.org/10.1149/1945-7111/ab717a
12. Sadeddine S et al., Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D Silicon layer, Sci. Rep. 7, 44400, 2017. https://doi.org/10.1038/srep44400
13. Liu C-C, Feng W, and Yao Y, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107, 76802, 2011. https://doi.org/10.1103/PhysRevLett.107.076802
14. Ni Z et al., Tunable band gap in silicene and germanene, Nano Lett. 12, 113, 2012. https://doi.org/10.1021/nl203065e
15. Jia T-T et al., Band gap on/off switching of silicene superlattice, J. Phys. Chem. C. 119, 20747, 2015. https://doi.org/10.1021/acs.jpcc.5b06626
16. Drummond N D, Zólyomi V and Fal’ko V I, Electrically tunable band gap in silicene, Phys. Rev. B. 85, 75423, 2012. https://doi.org/10.1103/PhysRevB.85.075423
17. Lin S-Y, Liu H-Y, Nguyen D K, Tran N T T, Pham H D, Chang S-L, Lin C-Y and Lin M-F, Stacking-configuration-enriched fundamental properties in bilayer silicenes, Silicene-Based Layer. Mater., 5–28, 2020. https://doi.org/10.48550/arXiv.1912.10257
18. Jia T-T et al., Band gap on/off switching of silicene superlattice, J. Phys. Chem. C. 119, 20747, 2015. https://doi.org/10.1021/acs.jpcc.5b06626
19. Drummond N D, Zólyomi V and Fal’ko V I, Electrically tunable band gap in silicene, Phys. Rev. B. 85, 75423, 2012. https://doi.org/10.1103/PhysRevB.85.075423
20. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. YamadaTakamura, Phys. Rev. Lett. 13,685-690, 2013. https://doi.org/10.1103/PhysRevLett.111.107004
21. Mehdi Aghaei S, Torres I and Calizo I, Structural stability of functionalized silicene nanoribbons with normal, reconstructed, and hybrid edges, Nanomater., 5959162, 2016. http://dx.doi.org/10.1155/2016/5959162
22. Chuan M W, Wong K L, Hamzah A, Riyadi M A, Alias N E and Tan M L P, Electronic properties of silicene nanoribbons using tight-binding approach, International Symposium on Electronics and Smart Devices (ISESD), 1–4, 2019. http://dx.doi.org/10.1109/ISESD.2019.8909598
23. University of Basel, Corrugated Structure of 2D Material Silicene Precisly Measured, 2019. https://doi.org/10.1073/pnas.1913489117
24. Ghasemi N, Ahmadkhan Kordbacheh A and Berahman M, Electronic, magnetic and transport properties of zigzag silicene nanoribbon adsorbed with Cu atom: a first-principles calculation, J. Magn. Magn. Mater. 473, 306-11, 2019. http://dx.doi.org/10.1016/j.jmmm.2018.10.059
25. Xu L, Wang X-F, Zhou L and Yang Z-Y, Adsorption of Ti atoms on zigzag silicene nanoribbons: influence on electric, magnetic, and thermoelectric properties, J. Phys. D. Appl. Phys. 48, 215306, 2015.
26. Werbowy, S., Windholz, L. Studies of Landé gJ-factors of singly ionized neodymium isotopes (142, 143 and 145) at relatively small magnetic fields up to 334 G by collinear laser ion beam spectroscopy. Eur. Phys. J. D 71, 16 (2017). https://doi.org/10.1140/epjd/e2016-70641-3
27. (2009) neodymium. In: Manutchehr-Danai M. (eds) Dictionary of Gems and Gemology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72816-0_15124
28. Haynes, William M., ed. (2016). "Neodymium. Elements". CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 4.23. ISBN 9781498754293. http://www.hbcponline.com/
29. Andrej Szytula; Janusz Leciejewicz (8 March 1994). Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics, CRC Press. p. 1. ISBN 978-0-8493-4261-5. https://doi.org/10.1201/9780138719411
30. Stamenov P. (2021) Magnetism of the Elements. In: Coey J.M.D., Parkin S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_15
31. Greenwood and Earnshaw, Chemistry of the elements, School of Chemistry University of Leads, UK, Elseview, pp. 1235–8, 2005. https://www.elsevier.com/books/chemistry-of-the-elements/greenwood/978-0-7506-3365-9
32. T.J.Zhang et al, Experimental study of electrical properties at the Nd-doped Si-SiO2 interface, Journal of Physics and Chemistry of Solids, Volume 48, Issue 6, 1987, Pages 551-554, https://doi.org/10.1016/0022-3697(87)90050-3