Synthesis and characterization of CMC-wrapped Nano-ZnO for photocatalytic degradation of dye under sunlight
Abhishek Patel
Department of Chemistry, Guru Ghasidas Vishwavidyalaya
Ashlesha Kawale
Department of Chemistry, Guru Ghasidas Vishwavidyalaya
Neeru Sharma
Department of Chemistry, Guru Ghasidas Vishwavidyalaya
Nishant Shekhar
Department of Chemistry, Guru Ghasidas Vishwavidyalaya
Subhash Banerjee
Department of Chemistry, Guru Ghasidas Vishwavidyalaya
Arti Srivastava
Department of Chemistry, Guru Ghasidas Vishwavidyalaya
DOI: https://doi.org/10.59429/mi.v2i1.6310
Keywords: ZnO-CMC NSc; FTIR; XRD analysis; calcination; photocatalyst; methylene blue
Abstract
This research work focused on studying the fabrication of biopolymer carboxymethyl cellulose (CMC) wrapped ZnO nano-composite materials (ZnO-CMC NCs) and its applications in the photocatalytic degradation of methylene blue (MB) using under sunlight Irradiation. ZnO-CMC NCs were synthesized by using zinc acetate dihydrate as a precursor under alkaline conditions followed by the addition of capping agent CMC followed by calcination at various temperatures. The materials were characterized by FTIR, UV-Vis and powder XRD studies. The presence of CMC as a capping agent not only facilitated the nucleation and growth of (nanoparticles) NPs but also it provided stability and functionalization to the NPs. The varying calcination temperature played a significant role in influencing the size of NCs during the synthesis process. The crystallite size of ZnO-CMC NCs were found to be 19.5959 nm, 21.2518 nm, 23.5000 nm, 27.5930 nm, 34.9789 nm at 250°C, 350°C, 450°C, 550°C, and 650°C calcinations temperature respectively. It was observed that size increases slightly by increasing the calcination temperature from 250°C to 450°C. However, further increase in calcination temperature increases crystallite size significantly. The degradation of MB dye has been studies under UV-Vis spectrophotometer and it was observed that synthesized ZnO-CMC NCs were very efficient in the photocatalytic degradation of MB under natural sunlight. We believe that, these synthesized CMC-wrapped ZnO NCs will find wide range of photocatalytic applications for the treatment of organic pollutants in various dyes used in the chemical industries.
References
1. Gelperina S, Kisich K, Iseman MD &Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American journal of respiratory and critical care medicine 2005;172(12): 1487-1490 .doi: 10.1164/rccm.200504-613PP2. TanHW, An J, Chua CK & Tran T. Metallic nanoparticle inks for 3D printing of electronics. Advanced Electronic Materials 2019; 5(5):1800831doi: 10.1002/aelm.201800831
3. SaundersBR, Hybrid polymer/nanoparticle solar cells: Preparation, principles and challenges. Journal of colloid and interface science 2012; 369(1):1-15doi: 10.1016/j.jcis.2011.12.016
4. Das PK, Mohanty C, Purohit GK, Mishra S & Palo S . Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environmental Nanotechnology, Monitoring & Management 2022; 1:100679.doi:10.1016/j.enmm.2022.100679
5. Ghule, K, Ghule AV, Chen BJ & Ling YC. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry, 8(12), 1034-1041.doi: 10.1039/B605623G
6. Rasmussen JW, Martinez E, Louka P & Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert opinion on drug delivery 2010; 7(9):1063-1077.doi: 10.1517/17425247.2010.502560
7. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA & Roberts MS. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. Journal of biomedical optics2008;13(6) : 064031-064031.doi:10.1117/1.3041492
8. Cheng N, Tian J, Liu Q, Ge C, Qusti AH, Asiri AM, & Sun X. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS applied materials & interfaces 2013; 5(15): 6815-6819.doi: 10.1021/am401802r
9. Bindhu MR, Saranya P, Sheeba M, Vijilvani C, Rejiniemon TS, Al-Mohaimeed, A M &ElshikhMS. Functionalization of gold nanoparticles by β-cyclodextrin as a probe for the detection of heavy metals in water and photocatalytic degradation of textile dye. Environmental Research2021; 201: 111628.doi: 10.1016/j.envres.2021.111628
10. Guo Z, Pereira T, Choi O, Wang Y& Hahn, HT. Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. Journal of Materials Chemistry2006; 16(27): 2800-2808 .doi: 10.1039/b603020c
11. Wang H, Liang Y, Gong M, Li Y, Chang W, Mefford T& DaiH. An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature communications 2012; 3(1): 917. doi: 10.1038/ncomms1921
12. Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh, M, & de la Guardia M . Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry 2017; 97: 445-457.doi:10.1016/j.trac.2017.10.005
13. Ndolomingo M J, Bingwa N, &Meijboom R. Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science2020; 55(15): 6195-6241. doi: 10.1007/s10853-020-04415-x
14. Sharma D, Rajput J, Kaith BS, Kaur M& Sharma S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin solid films 2010; 519(3):1224-1229.doi: 10.1016/j.tsf.2010.08.073
15. Osmond MJ&Mccall MJ. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology2010;4(1):15-41.doi :10.3109/17435390903502028
16. Ha NH, Thinh DD, Huong NT, Phuong NH, Thach PD& HongHS. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Applied Surface Science 2018; 434: 1048-1054.doi: 10.1016/j.apsusc.2017.11.047
17. Strunk J, Kähler K, Xia X & MuhlerM. The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surface science 2009; 603(10-12): 1776-1783.doi: 10.1016/j.susc.2008.09.063
18. Uthirakumar P, Kim HG & Hong CH. Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs. Chemical Engineering Journal 2009; 155(3): 910-915 .doi: 10.1016/j.cej.2009.09.025
19. Pradeeswari K, Venkatesan A, Pandi P, Karthik K, Krishna KH & Kumar RM. Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Materials Research Express 2019;6(10):105525.doi:10.1088/2053-1591/ab3cae
20. Bisht G & RayamajhiS. ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine 2016; 3: 9.doi: 10.5772/63437
21. Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S & Samanta SK . Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterialinfections: Areview. BiotechnologyReports2020;25:e00427.doi: 10.1016/j.btre.2020.e00427
22. Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS & Ahmed MB Recent developments of carboxymethylcellulose.Polymers 2021;13(8): 1345.doi: 10.3390/polym13081345
23. Sroková I, Tomanová V, Ebringerová A, Malovíková A& Heinze T. Water‐soluble amphiphilic o‐(carboxymethyl) cellulose derivatives–synthesis and properties. Macromolecular Materials and Engineering 2004; 289(1): 63-69 .doi: 10.1002/mame.200300124
24. Alam K, Ahmed M, Akter S, Islam N& Eun J B . Effect of carboxymethylcellulose and starch as thickening agents on the quality of tomato ketchup. Pakistan Journal of Nutrition 2009; 8(8): 1144-1149.
25. Cai Z, Wu J, Du B& Zhang H. Impact of distribution of carboxymethyl substituents in the stabilizer of carboxymethyl cellulose on the stability of acidified milk drinks. Food hydrocolloids 2018; 76 :150-157.doi: 10.1016/j.foodhyd.2016.12.034
26. Ghanbarzadeh B& Almasi, H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International journal of biological Macromolecules2011; 48(1): 44-49.doi: 10.1016/j.ijbiomac.2010.09.014
27. Salama HE, Aziz, MSA, &Alsehli, M .Carboxymethyl cellulose/sodium alginate/chitosan biguanidine hydrochloride ternary system for edible coatings. International journal of biological macromolecules 2019; 139: 614-620. doi: 10.1016/j.ijbiomac.2019.08.008
28. ButunS,Ince FG, Erdugan H &SahinerN . One-step fabrication of biocompatible carboxymethyl cellulose polymeric particles for drug delivery systems. Carbohydrate polymers 2021; 86(2): 636-643. doi: 10.1016/j.carbpol.2011.05.001
29. ZenniferA, Senthilvelan P, Sethuraman S &Sundaramurth, D. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydrate Polymers 2021; 256: 117561. doi: 10.1016/j.carbpol.2020.117561
30. He F, Zhao, D, Liu, J & Roberts CB. Stabilization of Fe− Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. p; 46(1):29-34. doi: 10.1021/ie0610896
31. Gunathilake TMSU, Ching YC, Chuah CH, Abd Rahman N& Nai-Shang, L. pH-responsive poly (lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro. Journal of Drug Delivery Science and Technology2020; 58:101787.doi; 10.1016/j.jddst.2020.101787
32. Othman, NEA, Ismail F, AzizAA & Wahab NA. Preparation and Characterization of Palm-Based Sodium Carboxymethyl Cellulose for Application in Food Additive. University of Florida2021; 11: 13053-13063. doi: 10.33263/BRIAC115.1305313063
33. Khan I, Saeed K, Zekker I, ZhangB, Hendi AH, Ahmad A& Khan I. Review on methylene blue: Its properties, uses, toxicityand photodegradation. Water2022; 14(2): 242.doi:10.3390/w14020242
34. Alwan RM, Kadhim QA, Sahan KM, Ali RA, Mahdi RJ, Kassim NA & Jassim AN. Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanoscience and Nanotechnology2015; 5(1): 1-6.doi: 10.5923/j.nn.20150501.01
35. RaoufiD. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy 2013; 50: 932-937.doi:10.1016/j.renene.2012.08.076
36. Madathil ANP, Vanaja KA & Jayaraj MK. Synthesis of ZnO nanoparticles by hydrothermal method. In Nanophotonic materials IV 2007;6639: 47-55.doi: 10.1117/12.730364
37. Hasanpoor M, Aliofkhazraei M &Delavari HJPMS. Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science 2015; 11: 320-325doi: 10.1016/j.mspro.2015.11.101
38. Bai X, Li L, Liu H, Tan, L, Liu T & Meng X. Solvothermal synthesis of ZnO nanoparticles andanti-infection application in vivo. ACS applied materials & interfaces 2015; 7(2): 1308-1317.doi:10.1021/am507532p
39. AnandV& Srivastava VC. Zinc oxide nanoparticles synthesis by electrochemical method: Optimization of parameters for maximization of productivity and characterization. Journal of Alloys and Compounds 2015; 636: 288-292.doi:10.1016/j.jallcom.2015.02.189
40. Safeera TA, Anila EI .Synthesis and characterization of ZnO nanophosphor by microwave combustion technique. Int J Recent InnovEng Res 2017; 2(7):21–25.
41. Kayani ZN, Saleemi F, Batool I. Effect of calcinationTemperature on the properties of ZnO nanoparticles. Appl Phys A Mater Sci Process 2015;12(2):75–80.doi:10.1007/s00339-015-9019-1
42. Xiong G, Pal U, Serrano JG, Ucer KB, Williams RT .Photoluminescence and FTIR study of ZnO nanoparticles: TheImpurity and defect perspective. Phys Status Solidi Curr Top SolidStatePhys 2006; 3(10):3577–3581.doi:10.1002/pssc.200672164
43. Kołodziejczak-Radzimska A, Markiewicz E & Jesionowski T .Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials 2012; 2012:15-15. doi:10.1155/2012/656353
44. Ibrahim NA, Nada AA, Hassabo AG, Eid BM, Noor El-Deen A M& Abou-Zeid NY Effect of different capping agents on physicochemical and antimicrobial properties of ZnO nanoparticles. Chemical Papers 2017; 71: 1365-1375.doi: 10.1007/s11696-017-0132-9
45. Xiong G, Pal U, Serrano JG, UcerKB, Williams RT .Photoluminescence and FTIR study of ZnO nanoparticles: Theimpurity and defect perspective. Phys Status Solidi Curr Top SolidStatePhys2006; 3(10):3577–3581. doi: 10.1002/pssc.200672164
46. Kayani ZN, Saleemi F & Batool I .Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A 2015; 119, 713-720.doi: 10.1007/s00339-015-9019-1