A review of transforming neuromorphic computing with 2D material memtransistors
P. R. Sekhar Reddy
Semiconductor Laboratory (SEMICON-LAB), SASTRA-MHI Training Center, SASTRA Deemed to be University
DOI: https://doi.org/10.59429/mi.v2i1.6377
Keywords: 2D materials; memtransistor; synaptic devices; CMOS technology; neuromorphic computing and artificial intelligence
Abstract
In the pursuit of advancing neuromorphic computing, 2D material-based memtransistors have emerged as a promising avenue. These memtransistors offer a unique blend of attributes, including tiny dimensions, compactness, and low-power operation, making them ideal candidates to mimic human brain functionality for artificial intelligence applications. This review focuses on various 2D materials such as MoS2, WSe2, h-BN, and In2Se3, and their suitability for bio-synapse applications, highlighting their advantages over other synaptic devices. Additionally, the review suggests the development of multi-terminal memtransistor-based synaptic devices with innovative operational principles for in-memory computing applications. Finally, concludes by discussing both the current state of development and the prospects and challenges that lie ahead, aiming to inspire further progress in information storage and neuromorphic computing.
References
1. G. Lee, J.H. Baek, F. Ren, S.J. Pearton, G.H. Lee, J. Kim, Artificial Neuron and Synapse Devices Based on 2D Materials, Small 17 (2021) 1–16. https://doi.org/10.1002/smll.202100640.2. E. Miranda, J. Suñé, Memristors for neuromorphic circuits and artificial intelligence applications, Materials (Basel). 13 (2020). https://doi.org/10.3390/ma13040938.
3. P.Y. Chen, S. Yu, Technological Benchmark of Analog Synaptic Devices for Neuroinspired Architectures, IEEE Des. Test (2019). https://doi.org/10.1109/MDAT.2018.2890229.
4. I.H. Im, S.J. Kim, H.W. Jang, Memristive Devices for New Computing Paradigms, Adv. Intell. Syst. 2000105 (2020) 2000105. https://doi.org/10.1002/aisy.202000105.
5. N.K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia, J. Joshua Yang, Emerging Memory Devices for Neuromorphic Computing, Adv. Mater. Technol. 4 (2019). https://doi.org/10.1002/admt.201800589.
6. L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Emerging 2D Memory Devices for In-Memory Computing, Adv. Mater. 33 (2021). https://doi.org/10.1002/adma.202007081.
7. J. Park, Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook, Electronics 9 (2020) 1414. https://doi.org/10.3390/electronics9091414.
8. X. Feng, S. Li, S.L. Wong, S. Tong, L. Chen, P. Zhang, Supporting Information : Crossbar Array for In-Memory Computing, (n.d.) 1–12.
9. S.G. Kim, J.S. Han, H. Kim, S.Y. Kim, H.W. Jang, Recent Advances in Memristive Materials for Artificial Synapses, Adv. Mater. Technol. 3 (2018). https://doi.org/10.1002/admt.201800457.
10. L. Wang, W. Liao, S.L. Wong, Z.G. Yu, S. Li, Y.F. Lim, X. Feng, W.C. Tan, X. Huang, L. Chen, L. Liu, J. Chen, X. Gong, C. Zhu, X. Liu, Y.W. Zhang, D. Chi, K.W. Ang, Artificial Synapses Based on Multiterminal Memtransistors for Neuromorphic Application, Adv. Funct. Mater. 29 (2019) 1–10. https://doi.org/10.1002/adfm.201901106.
11. Q. Wan, M.T. Sharbati, J.R. Erickson, Y. Du, F. Xiong, Emerging Artificial Synaptic Devices for Neuromorphic Computing, Adv. Mater. Technol. 4 (2019) 1–34. https://doi.org/10.1002/admt.201900037.
12. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3 (2008) 429–433. https://doi.org/10.1038/nnano.2008.160.
13. S.G. Sarwat, B. Kersting, T. Moraitis, V.P. Jonnalagadda, A. Sebastian, Phase Change Memtransistive Synapse, (2021) 1–11. http://arxiv.org/abs/2105.13861.
14. X. Xia, W. Huang, P. Hang, T. Guo, Y. Yan, J. Yang, D. Yang, X. Yu, X. Li, 2D-Material-Based Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing, ACS Mater. Lett. 5 (2023) 1109–1135. https://doi.org/10.1021/acsmaterialslett.2c01026.
15. L. Sun, W. Wang, H. Yang, Recent Progress in Synaptic Devices Based on 2D Materials, Adv. Intell. Syst. 2 (2020) 1900167. https://doi.org/10.1002/aisy.201900167.
16. M.M. Rehman, H.M.M.U. Rehman, J.Z. Gul, W.Y. Kim, K.S. Karimov, N. Ahmed, Decade of 2D-materials-based RRAM devices: a review, Sci. Technol. Adv. Mater. 21 (2020) 147–186. https://doi.org/10.1080/14686996.2020.1730236.
17. W. Huh, S. Jang, J.Y. Lee, D. Lee, D. Lee, J.M. Lee, H.G. Park, J.C. Kim, H.Y. Jeong, G. Wang, C.H. Lee, Synaptic Barristor Based on Phase-Engineered 2D Heterostructures, Adv. Mater. 30 (2018) 1–7. https://doi.org/10.1002/adma.201801447.
18. M.M. Hussain, N. El-Atab, 2D materials show brain-like learning, Nat. Electron. 1 (2018) 436–437. https://doi.org/10.1038/s41928-018-0121-1.
19. J. Yuan, S.E. Liu, A. Shylendra, W.A. Gaviria Rojas, S. Guo, H. Bergeron, S. Li, H.S. Lee, S. Nasrin, V.K. Sangwan, A.R. Trivedi, M.C. Hersam, Reconfigurable MoS2Memtransistors for Continuous Learning in Spiking Neural Networks, Nano Lett. 21 (2021) 6432–6440. https://doi.org/10.1021/acs.nanolett.1c00982.
20. H. Park, M.A. Mastro, M.J. Tadjer, J. Kim, Programmable Multilevel Memtransistors Based on van der Waals Heterostructures, Adv. Electron. Mater. 5 (2019). https://doi.org/10.1002/aelm.201900333.
21. H.S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong, J. Yuan, K. Su, M.C. Hersam, Dual-Gated MoS2 Memtransistor Crossbar Array, Adv. Funct. Mater. 30 (2020) 1–12. https://doi.org/10.1002/adfm.202003683.
22. M. Naqi, M.S. Kang, N. liu, T. Kim, S. Baek, A. Bala, C. Moon, J. Park, S. Kim, Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network, Npj 2D Mater. Appl. 6 (2022) 1–9. https://doi.org/10.1038/s41699-022-00325-5.
23. G. Ding, B. Yang, R.S. Chen, W.A. Mo, K. Zhou, Y. Liu, G. Shang, Y. Zhai, S.T. Han, Y. Zhou, Reconfigurable 2D WSe2-Based Memtransistor for Mimicking Homosynaptic and Heterosynaptic Plasticity, Small 17 (2021) 1–13. https://doi.org/10.1002/smll.202103175.
24. T. Chen, C. Chuu, C. Tseng, C. Wen, H.P. Wong, S. Pan, R. Li, T. Chao, W. Chueh, Y. Zhang, Q. Fu, B.I. Yakobson, W. Chang, L. Li, Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu ( 111 ), Nature (2019). https://doi.org/10.1038/s41586-020-2009-2.
25. V.K.R. Rama, A.K. Ranade, P. Desai, B. Todankar, G. Kalita, H. Suzuki, M. Tanemura, Y. Hayashi, Characteristics of Vertical Ga 2 O 3 Schottky Junctions with the Interfacial Hexagonal Boron Nitride Film, ACS Omega 7 (2022) 26021–26028. https://doi.org/10.1021/acsomega.2c00506.
26. H. Arora, A. Erbe, Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe, InfoMat 3 (2021) 662–693. https://doi.org/10.1002/inf2.12160.
27. Y. Xi, J. Zhuang, W. Hao, Y. Du, Recent Progress on Two-Dimensional Heterostructures for Catalytic, Optoelectronic, and Energy Applications, ChemElectroChem 6 (2019) 2841–2851. https://doi.org/10.1002/celc.201900224.
28. Z.-L. Yuan, Y. Sun, D. Wang, K.-Q. Chen, L.-M. Tang, A review of ultra-thin ferroelectric films, J. Phys. Condens. Matter 33 (2021) 403003. https://doi.org/10.1088/1361-648X/ac145c.
29. G. Cao, P. Meng, J. Chen, H. Liu, R. Bian, C. Zhu, F. Liu, Z. Liu, 2D Material Based Synaptic Devices for Neuromorphic Computing, Adv. Funct. Mater. 31 (2021) 2005443. https://doi.org/10.1002/adfm.202005443.
30. G. Cao, P. Meng, J. Chen, H. Liu, R. Bian, C. Zhu, F. Liu, Z. Liu, 2D Material Based Synaptic Devices for Neuromorphic Computing, Adv. Funct. Mater. 31 (2021) 1–29. https://doi.org/10.1002/adfm.202005443.
31. J.H. Nam, S. Oh, H.Y. Jang, O. Kwon, H. Park, W. Park, J.D. Kwon, Y. Kim, B. Cho, Low Power MoS2/Nb2O5 Memtransistor Device with Highly Reliable Heterosynaptic Plasticity, Adv. Funct. Mater. 31 (2021) 1–10. https://doi.org/10.1002/adfm.202104174.
32. M.K. Kim, J.S. Lee, Short-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics, ACS Nano 12 (2018) 1680–1687. https://doi.org/10.1021/acsnano.7b08331.
33. T.J. Ko, H. Li, S.A. Mofid, C. Yoo, E. Okogbue, S.S. Han, M.S. Shawkat, A. Krishnaprasad, M.M. Islam, D. Dev, Y. Shin, K.H. Oh, G.H. Lee, T. Roy, Y. Jung, Two-Dimensional Near-Atom-Thickness Materials for Emerging Neuromorphic Devices and Applications, IScience 23 (2020). https://doi.org/10.1016/j.isci.2020.101676.
34. S.K. Mallik, R. Padhan, M.C. Sahu, G.K. Pradhan, P.K. Sahoo, S.P. Dash, S. Sahoo, Ionotronic WS2 memtransistors for 6-bit storage and neuromorphic adaptation at high temperature, Npj 2D Mater. Appl. 7 (2023) 1–12. https://doi.org/10.1038/s41699-023-00427-8.
35. D. Ielmini, S. Ambrogio, Emerging neuromorphic devices, Nanotechnology 31 (2020). https://doi.org/10.1088/1361-6528/ab554b.
36. L.A. Pastur-Romay, F. Cedrón, A. Pazos, A.B. Porto-Pazos, Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications, Int. J. Mol. Sci. 17 (2016) 1–26. https://doi.org/10.3390/ijms17081313.
37. T.J. Ko, H. Li, S.A. Mofid, C. Yoo, E. Okogbue, S.S. Han, M.S. Shawkat, A. Krishnaprasad, M.M. Islam, D. Dev, Y. Shin, K.H. Oh, G.H. Lee, T. Roy, Y. Jung, Two-Dimensional Near-Atom-Thickness Materials for Emerging Neuromorphic Devices and Applications, IScience 23 (2020) 101676. https://doi.org/10.1016/j.isci.2020.101676.
38. Y. Zhou, N. Xu, B. Gao, F. Zhuge, Z. Tang, X. Deng, Y. Li, Y. He, X. Miao, Complementary Memtransistor-Based Multilayer Neural Networks for Online Supervised Learning Through (Anti-)Spike-Timing-Dependent Plasticity, IEEE Trans. Neural Networks Learn. Syst. (2021) 1–12. https://doi.org/10.1109/TNNLS.2021.3082911.
39. Y. Zhao, D. Yu, Z. Liu, S. Li, Z. He, Memtransistors Based on Non-Layered In2S3 Two-Dimensional Thin Films with Optical-Modulated Multilevel Resistance States and Gate-Tunable Artificial Synaptic Plasticity, IEEE Access 8 (2020) 106726–106734. https://doi.org/10.1109/ACCESS.2020.3000589.
40. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses, Nat. Mater. 10 (2011) 591–595. https://doi.org/10.1038/nmat3054.
41. F. Ma, Y. Zhu, Z. Xu, Y. Liu, X. Zheng, S. Ju, Q. Li, Z. Ni, H. Hu, Y. Chai, C. Wu, T.W. Kim, F. Li, Optoelectronic Perovskite Synapses for Neuromorphic Computing, Adv. Funct. Mater. 30 (2020) 1–9. https://doi.org/10.1002/adfm.201908901.
42. H.Z. Shouval, S.S.H. Wang, G.M. Wittenberg, Spike timing dependent plasticity: A consequence of more fundamental learning rules, Front. Comput. Neurosci. 4 (2010) 1–13. https://doi.org/10.3389/fncom.2010.00019.
43. S. Gupta, P. Kumar, T. Paul, A. van Schaik, A. Ghosh, C.S. Thakur, Low Power, CMOS-MoS2 Memtransistor based Neuromorphic Hybrid Architecture for Wake-Up Systems, Sci. Rep. 9 (2019) 1–10. https://doi.org/10.1038/s41598-019-51606-x.
44. W. Wang, Y. Liu, L. Tang, Y. Jin, T. Zhao, F. Xiu, Controllable Schottky barriers between MoS2 and permalloy, Sci. Rep. 4 (2014) 1–8. https://doi.org/10.1038/srep06928.
45. M.-Y. Cha, H. Liu, T.-Y. Wang, L. Chen, H. Zhu, L. Ji, Q.-Q. Sun, D.W. Zhang, MoS 2 -based ferroelectric field-effect transistor with atomic layer deposited Hf 0.5 Zr 0.5 O 2 films toward memory applications, AIP Adv. 10 (2020) 065107. https://doi.org/10.1063/5.0010829.
46. J. Shim, H.S. Kim, Y.S. Shim, D.H. Kang, H.Y. Park, J. Lee, J. Jeon, S.J. Jung, Y.J. Song, W.S. Jung, J. Lee, S. Park, J. Kim, S. Lee, Y.H. Kim, J.H. Park, Extremely Large Gate Modulation in Vertical Graphene/WSe2Heterojunction Barristor Based on a Novel Transport Mechanism, Adv. Mater. 28 (2016) 5293–5299. https://doi.org/10.1002/adma.201506004.
47. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science (80-. ). 335 (2012) 61–64. https://doi.org/10.1126/science.1217654.
48. L.F. Abbott, W.G. Regehr, Synaptic computation, Nature 431 (2004) 796–803. https://doi.org/10.1038/nature03010.
49. M.F. Bear, R.C. Malenka, Synaptic plasticity: LTP and LTD, Curr. Opin. Neurobiol. 4 (1994) 389–399. https://doi.org/10.1016/0959-4388(94)90101-5.
50. R.S. Zucker, W.G. Regehr, Short-Term Synaptic Plasticity, Annu. Rev. Physiol. 64 (2002) 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547.
51. S. Kim, B. Choi, M. Lim, J. Yoon, J. Lee, H.-D. Kim, S.-J. Choi, Pattern Recognition Using Carbon Nanotube Synaptic Transistors with an Adjustable Weight Update Protocol, ACS Nano 11 (2017) 2814–2822. https://doi.org/10.1021/acsnano.6b07894.
52. H. Pan, Y. Zeng, Y. Shen, Y.H. Lin, J. Ma, L. Li, C.W. Nan, BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance, J. Mater. Chem. A 5 (2017) 5920–5926. https://doi.org/10.1039/c7ta00665a.
53. Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li, F. Hui, Z. Yu, F. Yuan, E. Pop, H.-S.P. Wong, M. Lanza, Electronic synapses made of layered two-dimensional materials, Nat. Electron. 1 (2018) 458–465. https://doi.org/10.1038/s41928-018-0118-9.
54. T. Usui, C.A. Donnelly, M. Logar, R. Sinclair, J. Schoonman, F.B. Prinz, Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition, Acta Mater. 61 (2013) 7660–7670. https://doi.org/10.1016/j.actamat.2013.09.003.
55. D. Min, Y. Li, C. Yan, D. Xie, S. Li, Q. Wu, Z. Xing, Thickness-dependent DC electrical breakdown of polyimide modulated by charge transport and molecular displacement, Polymers (Basel). 10 (2018). https://doi.org/10.3390/polym10091012.
56. B. Block, Y. Kim, D.K. Shetty, Dielectric breakdown of polycrystalline alumina: A weakest-link failure analysis, J. Am. Ceram. Soc. 96 (2013) 3430–3439. https://doi.org/10.1111/jace.12492.
57. Y. Chen, D. Li, H. Ren, Y. Tang, K. Liang, Y. Wang, F. Li, C. Song, J. Guan, Z. Chen, X. Lu, G. Xu, W. Li, S. Liu, B. Zhu, Highly Linear and Symmetric Synaptic Memtransistors Based on Polarization Switching in Two-Dimensional Ferroelectric Semiconductors, Small 18 (2022) 1–10. https://doi.org/10.1002/smll.202203611.
58. H.S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong, J. Yuan, K. Su, M.C. Hersam, Dual-Gated MoS2 Memtransistor Crossbar Array, Adv. Funct. Mater. 30 (2020). https://doi.org/10.1002/adfm.202003683.