Corrosion resistance assessment of MgAl nanosurface due to doping noble metals: A sustainable approach towards water treatment
Fatemeh Mollaamin
Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, 37150, Turkey
Keywords: noble metal; MgAl; CAM/LANL2DZ; DFT; electron transfer
Abstract
The corrosion inhibition efficiency of magnesium–aluminum (MgAl) by embedding the noble metals of Ni, Pd, Pt, Cu, Ag, Au on the surface has been investigated. The importance of the electrical double layer at the interface between a metal and an acid electrolyte together with its interaction with organic and inorganic molecules to produce initially electrostatic adsorption are highlighted. The important step in which molecules enable inhibition are production of a physical barrier where a physical adsorbed barrier of molecules prevent movement near the metal surface or decrease in metal reactivity where chemisorbed inhibitor molecules stick to active area on the metal surface. In the NMR spectroscopy, it has been observed the remarkable peaks around metal elements of Ni, Pd, Pt, Cu, Ag, Au through the doping on the MgAl nanoalloy, however there are some fluctuations in the chemical shielding behaviors of isotropic and anisotropy attributes. Furthermore, all accounted amounts are very close, which demonstrate the agreement of the measured specifications by all methodologies and the reliability of the computing values.
References
1.Iqra Rabani, Muhammad Shoaib Tahir, Won-Il Lee, Hai Bang Truong, Ghulam Dastgeer, Young-Soo Seo, Palladium nanoparticle formation on boron nitride nanotubes and their photocatalytic performance with visible light. Journal of Cleaner Production. 420, 138324, 2023. https://doi.org/10.1016/j.jclepro.2023.138324
2.Ramasubba Reddy Palem, Chinna Bathula, Ganesh Shimoga, Soo-Hong Lee, Ayman A. Ghfar, Sankar Sekar, Hyun-Seok Kim, Young-Soo Seo, Iqra Rabani, Fabrication of Ru loaded MgB2 with guar gum hybrid for photocatalytic degradation of crystal violet. International Journal of Biological Macromolecules. 253(3), 126948, 2023. https://doi.org/10.1016/j.ijbiomac.2023.126948
3.Iqra Rabani, Muhammad Shoaib Tahir, Fatima Afzal, Hai Bang Truong, Minsung Kim, Young-Soo Seo, High-efficient mineralization performance of photocatalysis activity towards organic pollutants over ruthenium nanoparticles stabilized by metal organic framework. Journal of Environmental Chemical Engineering. 11(1), 109235, 2023. https://doi.org/10.1016/j.jece.2022.109235
4.Iqra Rabani, Rabia Zafar, K. Subalakshmi, Hyun-Seok Kim, Chinna Bathula, Young-Soo Seo, A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. Journal of Hazardous Materials. 407, 124360, 2021. https://doi.org/10.1016/j.jhazmat.2020.124360
5.Wan, Y., Tang, B., Gao, Y., Tang, L., Sha, G., Zhang, B., Liang, N., Liu, C., Jiang, S., Chen, Z.; et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging, Acta Mater, 2020, 200, 274–286. https://doi.org/10.1016/j.actamat.2020.09.024.
6.Xin, T., Zhao, Y., Mahjoub, R., Jiang, J., Yadav, A., Nomoto, K., Niu, R., Tang, S., Ji, F., Quadir, Z., et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition, Sci. Adv, 2021, 23, 7. https://doi.org/10.1126/sciadv.abf3039.
7.Javaid, A., Czerwinski, F., Progress in twin roll casting of magnesium alloys: A review, J. Magnes. Alloy, 2021, 9, 362–391. https://doi.org/10.1016/j.jma.2020.10.003.
8.Weiler, J.P., Exploring the concept of castability in magnesium die-casting alloys, J. Magnes. Alloy, 2021, 9, 102–111. https://doi.org/10.1016/j.jma.2020.05.008.
9.Luo, Y., Deng, Y., Guan, L., Ye, L., Guo, X. The microstructure and corrosion resistance of as-extruded Mg-6Gd-2Y-(0–1.5) Nd-0.2Zr alloys, Mater. Des, 2020, 186, 108289. https://doi.org/10.1016/j.matdes.2019.108289.
10.Vanoni, F., Milani, G., Agostoni, C., Treglia, G., Faré, P., Camozzi, P., Lava, S., Bianchetti, M., Janett, S., Magnesium metabolism in chronic alcohol-use disorder: Meta-analysis and systematic review, Nutrients, 2021, 13, 1959. https://doi.org/10.3390/nu13061959.
11.Basri, S., Zulkifli, M.E., Hazri, N.S., Kamarudin, S.K., Quantum Behaviour of Mg and Mg-Al-Zn Microstructure, Crystals, 2023, 13, 501. https://doi.org/10.3390/cryst13030501.
12.Pearton, S.J., Kang, B.S., Kim, S.K., Ren, F.X., Gila, B., Abernathy, C.R., Lin, J., Chu, G., GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, J. Phys. Condens. Matter, 2004, 16, R961–R994. https://doi.org/10.1088/0953-8984/16/29/R02.
13.Mollaamin, F. Monajjemi, M. Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon. Computation. 2023, 11, 108. https://doi.org/10.3390/computation11060108.
14.Mollaamin, F., Monajjemi, M. In Silico-DFT Investigation of Nanocluster Alloys of Al-(Mg, Ge, Sn) Coated by Nitrogen Heterocyclic Carbenes as Corrosion Inhibitors. J Clust Sci 34, 2901–2918 (2023). https://doi.org/10.1007/s10876-023-02436-5
15.Mollaamin, F., Monajjemi, M. Coating of Al–X (X = Mg, Ga, Si) Alloys Nanosurface with Organic Corrosion Inhibitors Using TD-DFT Approach: Intra-Atomic and Interatomic Investigation through Langmuir Adsorption Study. Russ. J. Phys. Chem. A 97, 2241–2257 (2023). https://doi.org/10.1134/S0036024423100096
16.Mollaamin, F., Monajjemi, M. Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study. Russ. J. Phys. Chem. B 17, 658–672 (2023). https://doi.org/10.1134/S1990793123030223
17.Mollaamin, F., Monajjemi, M. Corrosion Inhibiting by Some Organic Heterocyclic Inhibitors Through Langmuir Adsorption Mechanism on the Al-X (X = Mg/Ga/Si) Alloy Surface: A Study of Quantum Three-Layer Method of CAM-DFT/ONIOM. J Bio Tribo Corros 9, 33 (2023). https://doi.org/10.1007/s40735-023-00751-y
18.Li, S., Dong, H., Wang, X., Liu, Z., Quenching Sensitivity of Al-Zn-Mg Alloy after Non-Isothermal Heat Treatment, Materials, 2019, 12, 1595. https://doi.org/10.3390/ma12101595.
19.Henkelman,G., Arnaldsson,A., Jónsson,H., A fast and robust algorithm for Bader decomposition of charge density, Computational Materials Science, 2006, 36(3), 354-360. https://doi.org/10.1016/j.commatsci.2005.04.010.
20.Blöchl, P.E., Projector augmented-wave method, Phys. Rev. B, 1994, 50, 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953.
21.Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865.
22.Ziesche, P., Kurth, S., Perdew, J.P., Density functionals from LDA to GGA, Comput. Mater. Sci, 1998, 11, 122–127. https://doi.org/10.1016/S0927-0256(97)00206-1.
23.Arrigoni, M., Madsen, G.K.H., Comparing the performance of LDA and GGA functionals in predicting the T lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and Bas, Comput. Mater. Sci, 2019, 156, 354–360. https://doi.org/10.1016/j.commatsci.2018.10.005.
24.Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas. Phys. Rev. B, 1964, 136, B864-B871. https://doi.org/10.1103/PhysRev.136.B864.
25.Kohn, W., Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects.Phys. Rev., 1965, 140, A1133- A1138. https://doi.org/10.1103/PhysRev.140.A1133.
26.Becke, A.D.,Density-functional thermochemistry. III. The role of exact exchange, J Chem Phys, 1993, 98, 5648–5652. https://doi.org/10.1063/1.464913.
27.Lee, C., Yang, W., Parr, R.G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B, 1988, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785.
28.Mollaamina,F., Mohammadi,S., Khalaj, Z., Monajjemi,M., Computational Modelling of Boron Nitride Nanosheet for Detecting and Trapping of Water Contaminant, Russ. J. Phys. Chem. B, 2024, 18 (1), 67–82. https://doi.org/10.1134/S1990793124010330
29.Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem, 1994, 98 (45), 11623–11627. https://doi.org/10.1021/j100096a001.
30.Cramer, C.J., Essentials of Computational Chemistry: Theories and Models, 2nd Edition Wiley. Wiley.com. Retrieved 2021-06-24, 2004.
31.Vosko, S.H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys, 1980, 58 (8), 1200–1211. https://doi.org/10.1139/p80-159.
32.Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., et al., Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
33.Dennington, R., Keith, T.A., Millam, J.M., GaussView. Version 6. Shawnee Mission (KS): Semichem Inc., 2016.
34.Monajjemi, M., Mahdavian, L., Mollaamin, F., Khaleghian, M., Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study, Russ. J. Inorg. Chem,2009, 54, 1465–1473. https://doi.org/10.1134/S0036023609090216.
35.Bakhshi, K., Mollaamin,F., Monajjemi, M., Exchange and Correlation Effect of Hydrogen Chemisorption on Nano V(100) Surface: A DFT Study by Generalized Gradient Approximation (GGA), J. Comput. Theor. Nanosci, 2011, 8, 763–768. https://doi.org/10.1166/JCTN.2011.1750.
36.Mollaamin, F. Competitive intracellular hydrogen-nanocarrier among aluminum, carbon, or silicon implantation: A novel technology of eco-friendly energy storage using research density functional theory. Russ J Phys Chem B. 2024, 18, 805-820. https://doi.org/10.1134/S1990793124700131.
37.Mollaamin, F., Monajjemi, M., Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations, J. Comput. Theor. Nanosci, 2015, 12, 1030-1039. https://doi.org/10.1166/jctn.2015.3846.
38.Zadeh, M.A.A., Lari, H., Kharghanian, L., Balali, E., Khadivi, R., Yahyaei, H.,Mollaamin, F., Monajjemi, M., Density functional theory study and anti-cancer properties of shyshaq plant: In view point of nano biotechnology, J. Comput. Theor. Nanosci 2015, 12, 4358–4367, https://doi.org/10.1166/jctn.2015.4366.
39.Monajjemi, M., Baie, M.T., Mollaamin, F., Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1-3) complexes: Density functional calculations, Russian Chemical Bulletin, 2010, 59, 886-889. https://doi.org/10.1007/s11172-010-0181-5.
40.Monajjemi, M., Khaleghian, M., Tadayonpour, N., Mollaamin, F., The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study, Int. J. Nanosci, 2010, 09, 517-529, https://doi.org/10.1142/S0219581X10007071.
41.Tahan, A., Mollaamin, F., Monajjemi, M., Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy, Russian Journal of Physical Chemistry A, 2009, 83, 587-597, https://doi.org/10.1134/S003602440904013X.
42.Mollaamin, F., Monajjemi, M., Trapping of toxic heavy metals from water by GN–nanocage: Application of nanomaterials for contaminant removal technique, J. Mol. Struct, 2024, 1300, 137214. https://doi.org/10.1016/j.molstruc.2023.137214.
43.Mollaamin, F., Ilkhani, A., Sakhaei, N., Bonsakhteh, B., Faridchehr, A., Tohidi, S., Monajjemi, M.,Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study, Journal of Computational and Theoretical Nanoscience, 2015, 12, 3148-3154. https://doi.org/10.1166/jctn.2015.4092.
44.Mollaamin,F., Majid Monajjemi,M., Molecular simulation of (Al–Ga) surface garnished with chromium metal for organic material detecting: A DFT study. Functional Materials Letters, 2023, 16(07), 2340028. https://doi.org/10.1142/S1793604723400283.
45.Khalili Hadad, B., Mollaamin, F., Monajjemi, M. Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russian Chemical Bulletin, 2011,60, 238-241, https://doi.org/10.1007/s11172-011-0039-5.
46.Mollaamin, F., Features of Parametric Point Nuclear Magnetic Resonance of Metals Implantation on Boron Nitride Nanotube by Density Functional Theory/Electron Paramagnetic Resonance. Journal of Computational and Theoretical Nanoscience, 11(11), 2014, 2393–2398. https://doi.org/10.1166/jctn.2014.3653.
47.Mollaamin, F., Monajjemi, M., In Situ Ti-Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory, Russ. J. Phys. Chem. B, 2024, 18 (1), 49–66. https://doi.org/10.1134/S1990793124010159.
48.Sarasia, E.M., Afsharnezhad, S., Honarparvar, B., Mollaamin, F.,Monajjemi, M., Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives, Phys Chem Liquids, 2011, 49, 561–571, https://doi.org/10.1080/00319101003698992.
49.Shahriari, S., Mollaamin, F., Monajjemi, M., Increasing the Performance of {[(1-x-y) LiCo0.3Cu0.7] (Al and Mg doped)] O2}, xLi2MnO3, yLiCoO2 Composites as Cathode Material in Lithium-Ion Battery: Synthesis and Characterization. Micromachines 2023, 14, 241. https://doi.org/10.3390/mi14020241.
50.Monajjemi, M., Mollaamin,F., Shojaei, S., An overview on Coronaviruses family from past to Covid-19: Introduce some inhibitors as antiviruses from Gillan’s plants, Biointerface Res. Appl. Chem, 2020, 10, 5575. https://doi.org/10.33263/BRIAC103.575585.
51.Mollaamin, F., Monajjemi, M., Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sensors for NO, NO2, and NH3 adsorbing: a DFT study, J Mol Model, 2023, 29, 170. https://doi.org/10.1007/s00894-023-05567-8.
52.Mollaamin, F., Monajjemi, M., Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: a molecular modeling framework by DFT perspective, J Mol Model, 2023, 29, 119 (2023). https://doi.org/10.1007/s00894-023-05526-3.
53.Mollaamin, F., Monajjemi, M., Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method, Sensor Review, 2023, 43, 266–279. https://doi.org/10.1108/SR-03-2023-0040.
54.Trontelj, Z.; Pirnat, J.; Jazbinšek, V.; Lužnik, J.; Srčič, S.; Lavrič, Z.; Beguš, S.; Apih, T.; Žagar, V.; Seliger, J. Nuclear Quadrupole Resonance (NQR)—A Useful Spectroscopic Tool in Pharmacy for the Study of Polymorphism. Crystals 2020, 10, 450. https://doi.org/10.3390/cryst10060450.
55.Sciotto, R.; Ruiz Alvarado, I.A.; Schmidt, W.G. Substrate Doping and Defect Influence on P-Rich InP(001):H Surface Properties. Surfaces 2024, 7, 79-87. https://doi.org/10.3390/surfaces7010006
56.Luo,J., Wang,C., Wang,Z., Guo,Q., Yang,J., Rui Zhou, R., Matano,K., Oguchi,T., Ren, Z., NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3*, Chinese Physm, 2020, B 29, 067402. https://doi.org/10.1088/1674-1056/ab892d.
57.Young, Hugh A.; Freedman, Roger D. (2012). Sears and Zemansky's University Physics with Modern Physics (13th ed.). Boston: Addison-Wesley. p. 754.
58.Sohail, U., Ullah, F., Binti Zainal Arfan, N.H., Abdul Hamid, M.H.S., Mahmood, T., Sheikh, N.S., Ayub, K., Transition Metal Sensing with Nitrogenated Holey Graphene: A First-Principles Investigation, Molecules, 2023, 28, 4060. https://doi.org/10.3390/molecules28104060.