Catalytic and antibacterial activity of annealed nickel sulfides quantum dots
Muhammad Ikrama
Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
DOI: https://doi.org/10.59429/mi.v1i1.92
Keywords: NiS, Annealing; QDs, Co-precipitation
Abstract
In this research, nickel sulfide (NiS) quantum dots (QDs) were prepared through the co-precipitation method and annealed at same temperature with different time. This study aimed to check the influence of annealing time on catalytic reduction of rhodamine B () and antibacterial efficacy against E. coli. The synthesized NiS were characterized thorough XRD, UV-Vis, SAED and TEM analysis to check the effect of annealing time on structural, optical and morphological of QDs. XRD spectra depicted that crystallinity of the NiS increased upon enhancing the annealing time. Electronic transition spectroscopy exhibited the blue shift by increasing annealing time, leading to band gap energy enhancement. TEM images demonstrated that agglomeration of the QDs increased by increasing the annealing time. EDS spectra verified the formation of NiS QDs. SAED analysis confirmed the polycrystalline behavior of host and annealed NiS. The pure NiS demonstrated substantial catalytic reduction of dye in acidic medium comparison to other media. Moreover, host sample (NiS) exhibited maximum inhibition zone for E. coli at higher concentration.
References
1.L. Liu, Z. Chen, J. Zhang, D. Shan, Y. Wu, L. Bai, B. Wang, Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review, J. Water Process Eng. 42 (2021). https://doi.org/10.1016/j.jwpe.2021.102122.
2.S.N. Chattopadhyay, N.C. Pan, Ecofriendly printing of jute fabric with natural dyes and thickener, J. Nat. Fibers. 16 (2019) 1077–1088. https://doi.org/10.1080/15440478.2018.1449161.
3.J. Zhao, L. Ding, X. Sui, Z. Mao, H. Xu, Y. Zhong, L. Zhang, Z. Chen, B. Wang, Bio-based polymer colorants from nonaqueous reactive dyeing of regenerated cellulose for plastics and textiles, Carbohydr. Polym. 206 (2019) 734–741. https://doi.org/10.1016/j.carbpol.2018.11.056.
4.N. Minju, G. Jobin, S. Savithri, S. Ananthakumar, Double-Silicate Derived Hybrid Foams for High-Capacity Adsorption of Textile Dye Effluent: Statistical Optimization and Adsorption Studies, Langmuir. 35 (2019) 9382–9395. https://doi.org/10.1021/acs.langmuir.9b00898.
5.R. Darvishi Cheshmeh Soltani, A.R. Khataee, M. Safari, S.W. Joo, Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions, Int. Biodeterior. Biodegrad. 85 (2013) 383–391. https://doi.org/10.1016/j.ibiod.2013.09.004.
6.K.T. Kubra, M.S. Salman, M.N. Hasan, Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent, J. Mol. Liq. 328 (2021). https://doi.org/10.1016/j.molliq.2021.115468.
7.H. Veisi, S. Azizi, P.M.-J. of cleaner Production, U. 2018, nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of …, Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S0959652617322321?casa_token=UVi7e4gpEJ0AAAAA:fieLAPjZOZ64TMH-9N3TqyTIcrZQQe20WgzLiOWzv7CYhjmJuoR1gi_EX45oJzlUqeTMGMlX8qI (accessed September 3, 2023).
8.H. Veisi, S. Azizi, P. Mohammadi, Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water, J. Clean. Prod. 170 (2018) 1536–1543. https://doi.org/10.1016/j.jclepro.2017.09.265.
9.M. Naz, A. Rafiq, M. Ikram, A. Haider, S.O.A. Ahmad, J. Haider, S. Naz, Elimination of dyes by catalytic reduction in the absence of light: A review, J. Mater. Sci. 56 (2021) 15572–15608. https://doi.org/10.1007/s10853-021-06279-1.
10.Y. Guo, O.A. Zelekew, H. Sun, D.H. Kuo, J. Lin, X. Chen, Catalytic reduction of organic and hexavalent chromium pollutants with highly active bimetal CuBiOS oxysulfide catalyst under dark, Sep. Purif. Technol. 242 (2020). https://doi.org/10.1016/j.seppur.2020.116769.
11.R. Begum, J. Najeeb, A. Sattar, K. Naseem, A. Irfan, A.G. Al-Sehemi, Z.H. Farooqi, Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review, Rev. Chem. Eng. 36 (2020) 749–770. https://doi.org/10.1515/revce-2018-0047.
12.P.A. Carneiro, D.P. Oliveira, G.A. Umbuzeiro, M.V.B. Zanoni, Mutagenic activity removal of selected disperse dye by photoeletrocatalytic treatment, J. Appl. Electrochem. 40 (2010) 485–492. https://doi.org/10.1007/s10800-009-0018-9.
13.L. Ren, G. Zhao, L. Pan, B. Chen, Y. Chen, Q. Zhang, X. Xiao, W. Xu, Efficient Removal of Dye from Wastewater without Selectivity Using Activated Carbon- Juncus effusus Porous Fibril Composites, ACS Appl. Mater. Interfaces. 13 (2021) 19176–19186. https://doi.org/10.1021/acsami.0c22104.
14.F. Zaviska, P. Drogui, J.F. Blais, G. Mercier, In situ active chlorine generation for the treatment of dye-containing effluents, J. Appl. Electrochem. 39 (2009) 2397–2408. https://doi.org/10.1007/s10800-009-9927-x.
15.F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-25673-5.
16.J. Hassan, M. Ikram, A. Ul-Hamid, M. Imran, M. Aqeel, S. Ali, Application of Chemically Exfoliated Boron Nitride Nanosheets Doped with Co to Remove Organic Pollutants Rapidly from Textile Water, Nanoscale Res. Lett. 15 (2020). https://doi.org/10.1186/s11671-020-03315-y.
17.F.D.-J. of dairy science, U. 1983, Mastitis—progress on control, Elsevier. (n.d.). https://www.sciencedirect.com/science/article/pii/S0022030283820050 (accessed September 3, 2023).
18.A. Haider, M. Ijaz, S. Ali, J. Haider, M. Imran, H. Majeed, I. Shahzadi, M.M. Ali, J.A. Khan, M. Ikram, Green Synthesized Phytochemically (Zingiber officinale and Allium sativum) Reduced Nickel Oxide Nanoparticles Confirmed Bactericidal and Catalytic Potential, Nanoscale Res. Lett. 15 (2020). https://doi.org/10.1186/s11671-020-3283-5.
19.T.Y. Shin, S.H. Yoo, S. Park, Gold nanotubes with a nanoporous wall: Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation, Chem. Mater. 20 (2008) 5682–5686. https://doi.org/10.1021/cm800859k.
20.A. Radoń, A. Drygała, Ł. Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers, Mater. Charact. 131 (2017) 148–156. https://doi.org/10.1016/j.matchar.2017.06.034.
21.G.C. Zhang, J. Zhong, M. Xu, Y. Yang, Y. Li, Z. Fang, S. Tang, D. Yuan, B. Wen, J. Gu, Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance, Chem. Eng. J. 375 (2019). https://doi.org/10.1016/j.cej.2019.122093.
22.X.T. Wang, Y. Li, X.Q. Zhang, J.F. Li, X. Li, C.W. Wang, Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes, Appl. Surf. Sci. 504 (2020). https://doi.org/10.1016/j.apsusc.2019.144363.
23.S. Muninathan, S. Arumugam, Enhanced photocatalytic activities of NiS decorated reduced graphene oxide for hydrogen production and toxic dye degradation under visible light irradiation, Int. J. Hydrogen Energy. 46 (2021) 6532–6546. https://doi.org/10.1016/j.ijhydene.2020.11.178.
24.S. Yan, K. Wang, F. Zhou, S. Lin, H. Song, Y. Shi, J. Yao, Ultrafine Co:FeS2/CoS2 Heterostructure Nanowires for Highly Efficient Hydrogen Evolution Reaction, ACS Appl. Energy Mater. 3 (2020) 514–520. https://doi.org/10.1021/acsaem.9b01769.
25.H.J. Bai, Z.M. Zhang, J. Gong, Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides, Biotechnol. Lett. 28 (2006) 1135–1139. https://doi.org/10.1007/s10529-006-9063-1.
26.M.R. Gao, J. Jiang, S.H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR), Small. 8 (2012) 13–27. https://doi.org/10.1002/smll.201101573.
27.S. Thirumaran, G. Gurumoorthy, R. Arulmozhi, S. Ciattini, Synthesis of nickel sulfide and nickel–iron sulfide nanoparticles from nickel dithiocarbamate complexes and their photocatalytic activities, Appl. Organomet. Chem. 34 (2020). https://doi.org/10.1002/aoc.5761.
28.Y.P. Yuan, S.W. Cao, L.S. Yin, L. Xu, C. Xue, NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation, Int. J. Hydrogen Energy. 38 (2013) 7218–7223. https://doi.org/10.1016/j.ijhydene.2013.03.169.
29.S. Haider, S.S. Shar, I. Shakir, P.O. Agboola, Design of NiS/CNTs nanocomposites for visible light driven catalysis and antibacterial activity studies, Ceram. Int. 47 (2021) 34269–34277. https://doi.org/10.1016/j.ceramint.2021.08.337.
30.O.A. Alani, H.A. Ari, N.A.O. Offiong, S.O. Alani, B. Li, Q. rui Zeng, W. Feng, Catalytic Removal of Selected Textile Dyes Using Zero-Valent Copper Nanoparticles Loaded on Filter Paper-Chitosan-Titanium Oxide Heterogeneous Support, J. Polym. Environ. 29 (2021) 2825–2839. https://doi.org/10.1007/s10924-021-02062-0.
31.M. Saeed, M. Siddique, M. Ibrahim, N. Akram, M. Usman, M.A. Aleem, A. Baig, Calotropis gigantea leaves assisted biosynthesis of ZnO and Ag@ZnO catalysts for degradation of rhodamine B dye in aqueous medium, Environ. Prog. Sustain. Energy. 39 (2020). https://doi.org/10.1002/ep.13408.
32.K.K. Bera, M. Chakraborty, M. Mondal, S. Banik, S.K. Bhattacharya, Synthesis of α-β Bi2O3 heterojunction photocatalyst and evaluation of reaction mechanism for degradation of RhB dye under natural sunlight, Ceram. Int. 46 (2020) 7667–7680. https://doi.org/10.1016/j.ceramint.2019.11.269.
33.V.M. Pierce, A.J. Mathers, Setting Antimicrobial Susceptibility Testing Breakpoints: A Primer for Pediatric Infectious Diseases Specialists on the Clinical and Laboratory Standards Institute Approach, J. Pediatric Infect. Dis. Soc. 11 (2022) 73–80. https://doi.org/10.1093/jpids/piab106.
34.B.A. Iwalokun, A. Ogunledun, D.O. Ogbolu, S.B. Bamiro, J. Jimi-Omojola, In vitro antimicrobial properties of aqueous garlic extract against multidrug-resistant bacteria and Candida species from Nigeria, J. Med. Food. 7 (2004) 327–333. https://doi.org/10.1089/jmf.2004.7.327.
35.D. Negi, R. Shyam, S.R. Nelamarri, Role of annealing temperature on structural and optical properties of MgTiO3 thin films, Mater. Lett. X. 11 (2021). https://doi.org/10.1016/j.mlblux.2021.100088.
36.M. Salavati-Niasari, G. Banaiean-Monfared, H. Emadi, M. Enhessari, Synthesis and characterization of nickel sulfide nanoparticles via cyclic microwave radiation, Comptes Rendus Chim. 16 (2013) 929–936. https://doi.org/10.1016/j.crci.2013.01.011.
37.K. Skrabania, A. Miasnikova, A.M. Bivigou-Koumba, D. Zehm, A. Laschewsky, Examining the UV-vis absorption of RAFT chain transfer agents and their use for polymer analysis, Polym. Chem. 2 (2011) 2074–2083. https://doi.org/10.1039/c1py00173f.
38.S. Munusamy, R. sai laxmi Aparna, R. gunneswara subramanya v Prasad, Photocatalytic effect of TiO2and the effect of dopants on degradation of brilliant green, Sustain. Chem. Process. 1 (2013). https://doi.org/10.1186/2043-7129-1-4.
39.S. Moeen, M. Ikram, A. Haider, J. Haider, A. Ul-Hamid, W. Nabgan, T. Shujah, M. Naz, I. Shahzadi, Comparative Study of Sonophotocatalytic, Photocatalytic, and Catalytic Activities of Magnesium and Chitosan-Doped Tin Oxide Quantum Dots, ACS Omega. 7 (2022) 46428–46439. https://doi.org/10.1021/acsomega.2c05133.
40.Ayesha, M. Imran, A. Haider, I. Shahzadi, S. Moeen, A. Ul-Hamid, W. Nabgan, A. Shahzadi, T. Alshahrani, M. Ikram, Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis, J. Environ. Chem. Eng. 11 (2023). https://doi.org/10.1016/j.jece.2023.110088.
41.M. Ikram, A. Haider, M. Imran, J. Haider, S. Naz, A. Ul-Hamid, A. Shahzadi, K. Ghazanfar, W. Nabgan, S. Moeen, S. Ali, Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanostructures, Int. J. Biol. Macromol. 230 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123190.
42.A. Mahmoodi, S. Solaymani, M. Amini, N.B. Nezafat, M. Ghoranneviss, Structural, Morphological and Antibacterial Characterization of CuO Nanowires, Silicon. 10 (2018) 1427–1431. https://doi.org/10.1007/s12633-017-9621-2.
43.T.U. Doan Thi, T.T. Nguyen, Y.D. Thi, K.H. Ta Thi, B.T. Phan, K.N. Pham, Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities, RSC Adv. 10 (2020) 23899–23907. https://doi.org/10.1039/d0ra04926c.