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Molecular hydrogen (H2) and oxyhydrogen (66% H2/ 33% O2) gases have been demonstrated to remediate 

the effects of numerous diseases in adults[1-4]. By acting as an anti-inflammatory and antioxidative agent, it is 

reported that H2 can improve recovery through mitigating hyperinflammatory responses and reducing 

oxidative stress[5-7]. As the precise mechanisms of H2 activity are currently undefined, the lack of primary target 

identification, coupled with difficulties regarding administration methods (e.g., dosage and dosage frequencies, 

and long-term effects of treatments), there is a requirement for H2 research to evidence how it can reasonably 

and effectively, be incorporated into healthcare.  

H2 forms through the amalgamation of two hydrogen atoms, resulting in an H-H bonding energy of 107 

kcal/mol (4.64 eV)[8] and a redox potential (2H + 2e- → H2) of -0.421 eV at pH 7 relative to the standard 

hydrogen electrode[9]. While the primary mechanism of H2 activity remains unclear, a prevalent hypothesis 

posits that H2 can mitigate excessive reactive oxygen and nitrogen species (ROS/RNS) through direct 

interaction with radical and ionic species such as hydroxyl radicals (•OH) and peroxynitrite (ONOO-). However, 

the favourability of these reaction kinetics in vivo is still a matter of debate[10-12]. 

Despite the documented clinical benefits of H2 therapies[13-16], significant questions remain about the 

distribution and molecular mechanisms of H2 within biological systems. Key questions include how H2 reaches 

target tissues, what the primary physiological targets of H2 interactions are, and how H2 maintains its influence 

over time. In response, international research institutions are dedicating resources to understanding the effects 

of H2 on cellular and systemic physiology. This editorial assesses emerging research on H2 distribution and 

molecular activity of H2 in biological systems. 

The physical and chemical characteristics of H2 (e.g., electrochemically neutral, lightweight, non-polarity, 

etc.), should permit the molecule to diffuse through biological fluids, the extra-cellular matrix, cellular 

membranes and cytosolic compartments[17,18]. However, it is undetermined whether this mechanism of 
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dispersal would be able to explain the effects seen in distal organs. For example, when hydrogen-rich saline 

(HRS) is administered via intraperitoneal delivery, substantial amounts of H2 are recorded in proximal sites 

such as the pancreas and spleen, whilst stepwise reductions, progressing radially, are shown for the distal 

organs[19]. Interestingly, when H2 is delivered via inhalation, although the primary beneficiary organs are 

typically in close proximity (e.g., the brain, respiratory system and heart), significant increases in H2 

concentration are also seen in the spleen and skeletal muscle 30 minutes after application. Although this 

research[20] identified that intraperitoneal injection with HRS resulted in H2 elevation in the majority of tissues 

analysed, this method was not effective in delivering capacious amounts of H2 into the bloodstream or the 

wider cardiovascular system but was highly effective in delivering H2 to proximal organs including the 

intestines, liver, pancreas and spleen. Such results suggest a preference for distribution by simple diffusion, 

however, this still does not explain the elevated levels of H2 in distal organs such as the brain and kidneys, 

when elevated H2 levels in the blood are not detected. However, this factor could be explained if H2 were to 

transitorily reside within micropores, or pockets, formed within haemoglobin of red blood cells[21-23]; or if H2 

could be temporarily retained by molecules suspended in the serum such as carbohydrates (e.g., glycogen), or 

inorganic ions, calcium, potassium, or phosphates, as examples. This potential for temporary retention and 

residence within biological structures might contribute to observed biological effects of H2 administration. 

While evidence supporting the mitigation of cellular component oxidation and peroxidation by H2 is 

clear[24-28], evidence that this diatom acts as a direct antioxidant remains sparse. Although seminal calculations 

conducted by Kim et al. (2022)[29] suggest antioxidant activity through interactions between H2 and protohaem, 

kinetic modelling indicates that H2 is unlikely to react with other reactive gases in vivo, Table 1. To elucidate, 

the superoxide (O2
•-) anion, the principal molecule for reactive oxygen and reactive nitrogen species formation, 

has a spontaneous dismutation rate constant of 8 x 104 M-1 sec-1 (pH 7.8), albeit, this is a second-order rate 

reaction[30]. The first-order rate reaction is calculated to be 106 -fold more expedient[31]. Additionally, both the 

hydroxyl radical and the peroxynitrite ion, which are significant contributors to oxidative stress[32,33], have 

reaction kinetics that far surpass the reactions that may occur with H2. The reaction kinetics of •OH with H2 

are calculated to be 4.2 x107 M-1 s -1[34], whilst ONOO- is reported not to have a spontaneous dismutation rate 

of 1.1 - 1.3 M-1 s -1, with or without the addition of H2
[35]. 

Table 1. Data extracted and adapted from Zhang et al. (2019)[36]. Lifetime: natural log2 divided by the 

sum of the products of rate constant and concentrations for all molecules that ROS react with. Diffusion 

distance: calculated with the formula x = (6Dt)1/2 (x, D, t stand for diffusion distance, diffusion coefficients 

and lifetime, respectively).  
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Substance 
Chemical 

Nomenclature 

Theoretical 

Distance Travelled 

(meters) 

Theoretical 

Longevity 

(seconds) 

Primary Targets 

Hydrogen Peroxide H2O2 10-3 m 10-3 s Metal groups and thiols 

Hydroxyl Radical •OH 10-9 m 10-9 s 
Indiscriminate – all organic 

macromolecules 

Nitric Oxide Radical NO• 101 m 10-1 s Metal groups and thiols 

Peroxynitrite ONOO- 10-6 m 10-6 s 
CO2, Cys, Trp, Met and 

metal groups 

Superoxide O2
•- 10-9 m 10-3 s Fe–S clusters and NO• 

Given the favourable reaction rates of >1 x 10^9 M-1 s-1 for most radical interactions, the neutralisation of 

ROS/RNS in the milieu of amino acids, lipids and other reactive gases, by H2, appears biologically insignificant. 

Therefore, while H2 shows promise as an antioxidant, it is unlikely to be due to direct interactions with highly 

reactive biological compounds.  

Offering another explanation into the antioxidant activity of H2, in silico research infers that H2 can bind 

to the iron (Fe2+) in haem via asymmetric dihydrogen bonds and symmetric bilateral electron transfer, known 

as Kubas bonding[37]. The authors report that symmetric binding is more favourable under physiological 

conditions due to a moderately lower activation energy (2.04 eV vs. 2.14 eV). Wherein, Fe2+ is hypothesized 

to reduce the dissociation energy of the H-H bond in H2, forming an Fe2+/H• complex that can reduce highly 

reactive ions and radicals. The dissociation energy of Fe2+/H• was calculated to be 2.78 eV, allowing the bound 

H• radical to neutralise other reactive species[38]. However, the kinetics of this proposed mode of action remain 

unclear. 

Given these complexities, it is conceivable that the therapeutic potential of H2 extends beyond simple 

antioxidant activity. The effects of H2 on signaling pathways and gene expression modulation might offer 

alternative explanations for its observed benefits. For example, the downregulation of the NADPH oxidase 

(NOX-1) enzyme noted in H2-treated models suggests a regulatory role that could mitigate oxidative stress 

indirectly, by reducing the production of superoxide anions[39]. Additionally, H2 has been observed to influence 

cell signalling pathways involved in inflammation and oxidative stress, hinting at a broader regulatory function 

within cellular systems. Empirical studies demonstrate that H2 can modulate signal transduction pathways such 

as the Nrf2 pathway, which is crucial for cellular defence against oxidative stress[40-42]. This may be important 

as activation of Nrf2 leads to the expression of antioxidant enzymes including haem oxygenase-1 (HO-1) and 

superoxide dismutase (SOD), which can enhance the cell's intrinsic ability to manage oxidative damage[43]. 

This indirect mechanism of reducing oxidative stress through upregulation of endogenous antioxidant systems 

could be a significant aspect when considering the therapeutic efficacy of H2. 

As we delve deeper into the mechanisms and biomedical applications of H2, we stand at the cusp of 

unlocking new therapeutic strategies that could significantly impact the treatment of oxidative stress-related 

diseases. While the antioxidant properties of H2 are well-documented, its therapeutic potential likely extends 
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beyond direct radical scavenging[44]. The modulation of signaling pathways, gene expression, and 

inflammatory responses represents promising avenues through which H2 may exert its beneficial effects. As 

the scientific community continues to explore the potential of H2, several key areas warrant further 

investigation. Firstly, the development of advanced analytical techniques to accurately measure H2 

concentration and distribution in biological tissues will be pivotal. Secondly, understanding the interaction of 

H2 with cellular components at the molecular level will provide insights into its precise mechanisms of action. 

And lastly, clinical trials assessing the efficacy and safety of H2 in various disease models will help establish 

its therapeutic potential and inform clinical guidelines. By creating a robust, interdisciplinary, evidence-based 

library of research, it is possible that H2 therapeutics may herald new, innovative treatments for chronic 

inflammatory and oxidative stress-related diseases. 
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