中西医药发展

  • Home
  • About
    • About the Journal
    • Contact
  • Article
    • Current
    • Archives
  • Submissions
  • Editorial Team
  • Announcements
Register Login

ISSN

3060-9496(Oline)
3060-9488(Print)

Article Processing Charges (APCs)

SGD$600

Publication Frequency

Bi-Monthly

PDF

Published

2026-01-20

Issue

Vol 2 No 6 (2025): Published

Section

Articles

How to Cite

  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

  • Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

鼻咽癌放射性脑损伤的诊治进展

贺 前勇

贵州医科大学附属医院肿瘤科/贵州医科大学附属肿瘤医院头颈肿瘤科

杨 明慧

贵州医科大学附属肿瘤医院头颈肿瘤科

罗 秀玲

贵州医科大学附属医院肿瘤科/贵州医科大学附属肿瘤医院头颈肿瘤科


DOI: https://doi.org/10.59429/zxyy.v2i6.12470


Keywords: 鼻咽癌;放射性脑损伤;功能磁共振成像;正电子发射断层像 / 计算机断层显像;治疗


Abstract

鼻咽癌在我国发病率较高,放射治疗是初治无远处转移鼻咽癌的首选治疗方法。尽管调强放疗时代放射性脑 损伤的发生率在 5% 以下,但是放射性脑损伤是最严重的放疗后遗症,放射性脑损伤不仅表现为头痛、记忆力减退、 肢体功能障碍等临床症状,还可能导致严重的神经系统并发症,进而加重患者的身心负担,严重影响了患者生活质 量及生存率。因此通过多种功能影像组学对放射性脑损伤进行早期诊断尤为重要,以便进行早期诊断和早期治疗, 提高患者生活质量。


References

[1]Chen YP, Chan A, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019,394(10192):64-80.

[2]Caudell JJ, Gillison ML, Maghami E, et al. NCCN Guidelines® Insights: Head and Neck Cancers, Version 1.2022. J Natl Compr Canc Netw, 2022,20(3):224-234.

[3]Lu L, Sheng Y, Zhang G, et al. Temporal lobe injury patterns following intensity modulated radiotherapy in a large cohort of nasopharyngeal carcinoma patients[J]. Oral Oncol, 2018,85:8-14.

[4]Yang Y, Lin X, Li J, et al. Aberrant Brain Activity at Early Delay Stage Post-radiotherapy as a Biomarker for Predicting Neurocognitive Dysfunction Late-Delayed in Patients With Nasopharyngeal Carcinoma[J]. Front Neurol, 2019,10:752.

[5]Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature[J]. Acta Neuropathol, 2006,111(3):197-212.

[6]Liu S, Lu T, Zhao C, et al. Temporal lobe injury after re-irradiation of locally recurrent nasopharyngeal carcinoma using intensity modulated radiotherapy: clinical characteristics and prognostic factors[J]. J Neurooncol, 2014,119(2):421-428.

[7]Shin JE, Jung K, Kim M, et al. Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Exp Mol Med, 2018,50(4):1-18.

[8]Liao JF, Ma L, Du XJ, et al. Prognostic Value of Cavernous Sinus Invasion in Patients with Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiotherapy. PLoS One, 2016,11(1):e0146787.

[9]Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours[J]. Nat Rev Neurol, 2017,13(1):52-64.

[10]Feng M, Huang Y, Fan X, et al. Prognostic variables for temporal lobe injury after intensity modulated-radiotherapy of nasopharyngeal carcinoma. Cancer Med. 2018. 7(3): 557-564.

[11]Chen WS, Li JJ, Hong L, et al. Diagnostic Value of Magnetic Resonance Spectroscopy in Radiation Encephalopathy Induced by Radiotherapy for Patients with Nasopharyngeal Carcinoma: A Meta-Analysis. Biomed Res Int, 2016,2016:5126074.

[12]Travers S, Joshi K, Miller DC, et al. Reliability of Magnetic Resonance Spectroscopy and Positron Emission Tomography Computed Tomography in Differentiating Metastatic Brain Tumor Recurrence from Radiation Necrosis. World Neurosurg, 2021,151:e1059-e1068.

[13]Alirezaei Z, Amouheidari A, Hassanpour M, et al. Early Detection of Radiation-Induced Injury and Prediction of Cognitive Deficit by MRS Metabolites in Radiotherapy of Low-Grade Glioma. Biomed Res Int, 2021,2021:6616992.

[14]Shao Y, Wang Z, Chen J, et al. Diffusion tensor imaging parameters for the early diagnosis of radiation-induced brain injury in patients with nasopharyngeal carcinoma: a metaanalysis.Int J Radiat Biol, 2024,100(3):335-342.

[15]Tan XP, Zhao JQ, Liang BL, et al. [Diagnostic value of MR diffusion tensor imaging on radiation-induced early brain injury of nasopharyngeal carcinoma after radiotherapy]. Ai Zheng, 2004,23(11):1334-7.

[16]Qiu Y, Guo Z, Lin X, et al. Standard radiotherapy for patients with nasopharyngeal carcinoma results in progressive tract-specific brain white matter alterations: A one-year follow-up via diffusion tensor imaging. Radiother Oncol, 2021,159:255-264.

[17]Sollmann N, Hoffmann G, Schramm S, et al. Arterial Spin Labeling (ASL) in Neuroradiological Diagnostics - Methodological Overview and Use Cases. Rofo, 2024,196(1):36-51.

[18]Xiao B, Wang P, Zhao Y, et al. Combination of diffusion-weighted imaging and arterial spin labeling at 3.0 T for the clinical staging of nasopharyngeal carcinoma. Clin Imaging, 2020,66:127-132.

[19]Liu J, Zhu J, Wang Y, et al. Arterial spin labeling of nasopharyngeal carcinoma shows early therapy response. Insights Imaging, 2022,13(1):114.

[20]Liao L, Liu T, Wei B. Prediction of short-term treatment outcome of nasopharyngeal carcinoma based on voxel incoherent motion imaging and arterial spin labeling quantitative parameters. Eur J Radiol Open, 2023,10:100466.

[21]Zhang J, Wu Y, Wang Y, et al. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence. Eur Radiol, 2023,33(5):3332-3342.

[22]Kuo F, Ng NN, Nagpal S, et al. DSC Perfusion MRI-Derived Fractional Tumor Burden and Relative CBV Differentiate Tumor Progression and Radiation Necrosis in Brain Metastases Treated with Stereotactic Radiosurgery. AJNR Am J Neuroradiol, 2022,43(5):689-695.

[23]Fonti R, Conson M, Del Vecchio S. PET/CT in radiation oncology. Semin Oncol, 2019,46(3):202-209.

[24]Lin J, Xie G, Liao G, et al. Prognostic value of 18F-FDG-PET/CT in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis.Oncotarget, 2017,8(20):33884-33896.

[25]Li H, Kong Z, Xiang Y, et al. The role of PET/CT in radiotherapy for nasopharyngeal carcinoma. Front Oncol, 2022,12:1017758.

[26]Yamaki T, Uchino Y, Henmi H, et al. Increased brain glucose metabolism in chronic severe traumatic brain injury as determined by longitudinal 18F-FDG PET/CT. J Clin Neurosci, 2018,57:20-25.

[27]Lu L, Wei X, Li M, et al. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury. Neurol India, 2014,62(5):487-91.

[28]Beshr R, Isohashi K, Watabe T, et al. Preliminary feasibility study on differential diagnosis between radiationinduced cerebral necrosis and recurrent brain tumor by means of [(18)F]fluoro-borono-phenylalanine PET/CT. Ann Nucl Med, 2018,32(10):702-708.

[29]Zheng Z, Wang B, Zhao Q, et al. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol, 2022,32(1):319-330.

[30]Qu Y, Wang L, Mao Y. Gallic acid attenuates cerebral ischemia/re-perfusion-induced blood-brain barrier injury by modifying polarization of microglia. J Immunotoxicol, 2022,19(1):17-26.

[31]Cheng J, Jiang J, He B, et al. A phase 2 study of thalidomide for the treatment of radiation-induced blood-brain barrier injury. Sci Transl Med, 2023,15(684):eabm6543.

[32]Xu X, Huang H, Tu Y, et al. Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose Response, 2021,19(2):15593258211024393.

[33]Zhao X, Cheng J, Gui S, et al. Amifostine-Loaded Nanocarrier Traverses the Blood-Brain Barrier and Prevents Radiation-Induced Brain Injury. ACS Appl Mater Interfaces, 2023,15(12):15203-15219.

[34]Xiang J, Lu Y, Quan C, et al. Metformin Protects Radiation-Induced Early Brain Injury by Reducing Inflammation and DNA Damage. Brain Sci, 2023,13(4).

[35]Chen LJ, Zhang RG, Yu DD, et al. Shenqi Fuzheng Injection Ameliorates Radiation-induced Brain Injury. Curr Med Sci, 2019,39(6):965-971.

[36]Wang GH, Liu Y, Wu XB, et al. Neuroprotective effects of human umbilical cord-derived mesenchymal stromal cells combined with nimodipine against radiation-induced brain injury through inhibition of apoptosis. Cytotherapy, 2016,18(1):53-64.

[37]Chu C, Gao Y, Lan X, et al. Stem-Cell Therapy as a Potential Strategy for Radiation-Induced Brain Injury. Stem Cell Rev Rep, 2020,16(4):639-649.

[38]Wang G, Ren X, Yan H, et al. Neuroprotective Effects of Umbilical Cord-Derived Mesenchymal Stem Cells on Radiation-Induced Brain Injury in Mice. Ann Clin Lab Sci, 2020,50(1):57-64.

[39]Noda R, Akabane A, Kawashima M, et al. VEGFRTKI treatment for radiation-induced brain injury after gamma knife radiosurgery for brain metastases from renal cell carcinomas. Jpn J Clin Oncol, 2023,53(4):355-364.

[40]Liu Q, Huang Y, Duan M, et al. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci, 2022,23(15).

[41]Shi Z, Yu P, Lin WJ, et al. Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8(+) T lymphocytes. Neuron, 2023,111(5):696-710.e9.



ISSN: 3060-9496
21 Woodlands Close #02-10 Primz Bizhub Singapore 737854

Email:editorial_office@as-pub.com