Modeling gasoline dispersion and risks in soil after the 2019 spill in Tlahuelilpan, Hidalgo, using the HSSM and ChemCAN software
Raymundo López
Energy Department, Autonomous Metropolitan University, Azcapotzalco campus, CDMX, 02128, Mexico
Mabel Vaca
Energy Department, Autonomous Metropolitan University, Azcapotzalco campus, CDMX, 02128, Mexico
Zaira Miranda
Energy Department, Autonomous Metropolitan University, Azcapotzalco campus, CDMX, 02128, Mexico
Araceli Lara
Energy Department, Autonomous Metropolitan University, Azcapotzalco campus, CDMX, 02128, Mexico
Georgina Guzmán
Engineering Faculty, National Autonomous University of Mexico, CDMX, 04511, Mexico
Keywords: gasoline spill; HSSM software; ChemCAN software; infiltration model; risk assessment
Abstract
The dispersion of gasoline from the spill due to illegal fuel extraction activities from pipelines that occurred in Tlahuelilpan, Hidalgo, in 2019, was modelled. We used the HSSM software (vertical profile of gasoline saturation, profiles in the vadose zone, and radial profile of the light non-aqueous phase liquid lens), and prediction of its concentration in different media was obtained using the ChemCAN program. Gasoline infiltration would reach 7.5 meters deep at a rate of 0.30 mg/day in 10 days. Assuming that the vadose zone was at 10 m, the underground body of water would not be reached by the hydrocarbon. It was estimated that the maximum concentration of gasoline for the light fraction present in the soil was 2,200 mg/kg, ten times above the maximum permissible regulated limits. Benzene, a characteristic compound of gasoline, was studied in air-water-soil-sediment system, and it was observed that it would preferably accumulate in the sediments (84.9%) and the soil (11.8%), being the systems in greater contact with gasoline. The greatest risk due to the spillage during three subsequent years was related to the surface of the soil, affecting the flora, fauna, and population with exposure by inhalation and dermal contact, and the flammable danger of gasoline.
References
1.Ahmed, F., and Fakhruddin, A. 2018 A review on environmental contamination of petroleum hydrocarbons and its biodegradation. International Journal of Environmental Sciences & Natural Resources 11 (3). https:/doi.org/10.19080/IJESNR.2018.11.555811
2.Gao, H., Wu, M., Liu, H., Xu, Y., and Liu, Z. 2022. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environmental Pollution 293, 118511 https://doi.org/10.1016/j.envpol.2021.118511
3.PEMEX (Petróleos Mexicanos). 2018. Reporte de tomas clandestinas en 2018. https://www.pemex.com/acerca/informes_publicaciones/Paginas/tomas-clandestinas.aspx
4.PROFEPA. 2019 Estudio de suelo realizado por PROFEPA determina altos niveles de contaminación y daños irreversibles en Tlahuelilpan, Hidalgo. Procuraduría Federal de Protección al Ambiente. https://www.gob.mx/profepa/prensa/estudio-de-suelo-realizado-por-profepa-determina-altos-niveles-de-contaminacion-y-danos-irreversibles-en-tlahuelilpan-hidalgo
5.AP. 2019. Associate Press images. https://codiceinformativo.com/wp-content/uploads/2019/01/ap19019701896925-91559dccfe35efde8e6c01ed0df5c960-1200x600.jpg
6.Sale, T., Hopkins, H., and Kirkman, A. 2018 Managing risks at LNAPL sites, American Petroleum Institute Soil and Groundwater Research. https://www.api.org/~/media/Files/EHS/Clean_Water/Ground_Water_Quality/LNAPL-FAQs/LNAPL_FAQS_2nd%20edition-ES.pdf
7.EPA. 1997. Model for Evaluation of Hydrocarbons Spills Users Guide. Environmental Protection Agency. https://nepis.epa.gov
8.Trent University. 2021. ChemCAN Model - CEMC - Trent University https://www.trentu.ca/cemc/resources-and-models/chemcan-model
9.Asif, Z. and Chen. Z. 2014. Analysis of PCBs fate and transport mechanism through case study of transformer oil leakage in Montreal CSCE 2014 13th International Environmental Specialty Conference, Halifax.
10.Xu, Z., Chai, J., Wu, Y., and Qin, R. 2015. Transport and biodegradation modeling of gasoline spills in soil–aquifer system. Environmental Earth Sciences, 74(4), 2871–2882. https://doi.org/10.1007/s12665-015-4311-0
11.Kawamoto, K., MacLeod, M. and Mackay, D. 2001. Evaluation and comparison of multimedia mass balance models of chemical fate: application of EUSES and ChemCAN to 68 chemicals in Japan. Chemosphere, 44, 599-612 https://doi.org/10.1016/S0045-6535(00)00348-9
12.GMT. 2020. Hidalgo - Tlahuelilpan. Gobierno Municipal de Tlahuelilpan. http://www.inafed.gob.mx/work/enciclopedia/EMM13hidalgo/municipios/13070a.html
13.INEGI. 2021. Instituto Nacional de Estadística y Geografía Biblioteca digital de Mapas. INEGI. Mapas. https://www.inegi.org.mx/app/mapas/
14.Zafirakou, A. 2018. Oil Spill Dispersion Forecasting Models. Monitoring of Marine Pollution. https://doi.org/10.5772/intechopen.81764
15.CONAGUA. 2020. Actualización de la disponibilidad media anual de agua en el acuífero Valle del Mezquital (1310), estado de Hidalgo https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/hidalgo/DR_1310.pdf
16.Murillo, R., Prado, B., Durán, J. C., and Cisneros, B. (2012). Retención de 4-nonilfenol y di(2-etilhexil)ftalato en suelos del Valle de Tula, Hidalgo, México. Tecnología y Ciencias de agua, 3(4), 113–126. http://www.zonanosaturada.com/zns03/publications_files/p153-158.pdf
17.Kraemer, F. B., Castiglioni, M., Morrás, H., Fernández, P., and Álvarez, C. (2022). Pores size distribution and pores volume density of Mollisols and Vertisols under different cropping intensity managements with no-tillage. Geoderma, 405, 115398. https://doi.org/10.1016/j.geoderma.2021.115398
18.Díaz, E., Duarte, O., Cerana, J., and Fontanini, P. (2003). Ajuste metodológico en la medición de la conductividad hidráulica saturada “in situ” en suelos vertisoles y entisoles. Estudios de la Zona No Saturada del Suelo, 4, 153–158. http://www.zonanosaturada.com/zns03/publications_files/p153-158.pdf
19.Hsieh, D. P. H. 1994. Intermedia transfer factors for contaminants found at hazardous waste sites: Benzene. Risk Science Program, Department Environmental Toxicology. California University. https://dtsc.ca.gov/wp-content/uploads/sites/31/2018/01/bap.pdf
20.SEMARNAT. 2005. Norma Oficial Mexicana NOM-138-SEMARNAT/SS-2003, Que establece los límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación. Secretaría de Medio Ambiente y Recursos Naturales. http://www.ordenjuridico.gob.mx/Federal/PE/APF/APC/SEMARNAT/Normas/Oficiales/29032005(1).pdf
21.Abbasi Maedeh, P., Nasrabadi, T., and Wu, W. 2017. Evaluation of oil pollution dispersion in an unsaturated sandy soil environment. Pollution 3 701-711 https://doi.org/10.22059/POLL.2017.62784
22.Gonçalves Sales da Silva, I., Gomes de Almeida, F. C., Padilha da Rocha e Silva, N. M., Casazza, A. A., Converti, A. and Sarubbo, L. A. 2020. Soil bioremediation: overview of technologies and trends. Energies, 13, 4664; https://doi.org/10.3390/en13184664