Published
2024-05-07
Section
Articles
License
Copyright (c) 2024 Earthquake
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earthquake prediction using artificial intelligence in the Ferghana depression (Uzbekistan)
Ikram Atabekov
Institute of Seismology, Zulfiyakhanum Street 3, 100128 Tashkent, Uzbekistan
DOI: https://doi.org/10.59429/ear.v2i1.1879
Keywords: geodynamical modeling; stress; earthquake; machine learning; deep learning
Abstract
Earthquake prediction remains a formidable challenge due to its theoretical and practical complexities. The multifactorial nature of earthquakes leads to diverse anomalies, which are potential precursors. However, the intricate earthquake process and limited knowledge of the Earth's crust structure restrict the accuracy of these predictions. This study introduces an advancements using machine learning and deep learning methods, notably the Kora 3 and Kora 4 algorithms, to identify key earthquake features. We employed LSTM and RNN deep learning algorithms to predict earthquakes of magnitude M≤4.3 without temporal data. Our methodology was applied to the 2022 earthquake monitoring in the Fergana depression, demonstrating significant advancements in seismic event prediction.
References
1. Ma L., Zhu L., Shi Ya. Attempts at using seismicity indicators for the prediction of large earthquakes by Genetic Algorithm-Neural Network method (1998), https://www.researchgate.net/publication/2652939532. Ashif P., Hojjat A. Neural network model for earthquake magnitude prediction using multiple seismicity indicator//International Journal System. (2007), Vol. 17, No.1, Pp. 13-33.
3. Panakkat A., Adeli H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators.//Computer-Aided Civil and Infrastructure Engineering (2009), 24 (4), Pp. 280– 292.
4. Ashit K.D. Earthquake prediction using artificial neural networks//International Journal of Research and Reviews in Computer Science (IJRRCS) (2011), Vol. 2, No. 6, Pp. 2079-2557.
5. Mahmoudi J., Arjomand M. A., Rezaei M., Mohammadi M. H. Predicting the earthquake magnitude using the multilayer perceptron neural network with two hidden layers.//Civil Engineering Journal (2016), 2(1), Pp.1–12.
6. Asim K. M., Martínez-Álvarez F., Basit A., Iqbal T. Earthquake magnitude prediction in Hindukush region using machine learning techniques//Nat. Hazards (2017), Vol. 85, No. 1, pp. 471–486, doi: 10.1007/s11069-016-2579-3.
7. Rouet-Leduc, B., Hulbert, C.,Lubbers, N., Barros, K.,Humphreys, C. J., & Johnson, P. A. Machine learning predicts laboratory earthquakes.//Geophysical Research Letters (2017), 44, 9276–9282, https://doi.org/10.1002/2017GL074677
8. DeVries, P.M.R., Viégas, F., Wattenberg, M. Meade B.J. Deep learning of aftershock patterns following large earthquakes. //Nature (2018), 560, 632–634, https://doi.org/10.1038/s41586-018-0438-y
9. Kuyuk H.S., Susumu O. Real Time Classification of Earthquake using Deep Learning//Procedia Computer Science (2018), 140, Pp. 298-305, DOI: 10.1016/j.proc.2018.10.316
10. Shcherbakov, R. , Zhuang J., Zöller G., Ogata Y. Forecasting the magnitude of the largest expected earthquake//Nature Communications (2019), 10:4051, https://doi.org/10.1038/s41467-019-11958-4
11. Vardaan K., Bhandarkar T., Satish N., Sridhar S., Sivakumar R., Ghosh S. Earthquake trend prediction using long short-term memory RNN//International Journal of Electrical and Computer Engineering (IJECE) (2019), Vol. 9, No. 2, April, pp. 1304~1312 ISSN: 2088-8708, DOI: 10.11591/ijece.v9i2.
12. Bangar D.,Gupta D.,Gaikwad S., Marekar B., Patil J. Earthquake prediction using machine Learning Algorithms//Int. J. of Recent Technology and Engineering (2020), March, Vol.8, Issue 6, Pp. 4684-4688, DOI:10.35940/ijrte.E9110.018620
13. Salam M., Ibrahim L., Abdelminaam D. Earthquake Prediction using Hybrid Machine Learning Techniques//International Journal of Advanced Computer Science and Applications (2021), Vol. 12, No. 5, DOI: 10.14569/IJACSA.2021.0120578
14. Okazaki, T., Ito, T., Hirahara, K. Useda N. Physics-informed deep learning approach for modeling crustal deformation. Nat Commun (2022), 13, 7092, https://doi.org/10.1038/s41467-022-34922-1
15. Wang Q., Guo Y., Yu L., Li P. Earthquake Prediction based on Spatio-Temporal Data Mining: An LSTM Network Approach//IEEE, Transactions on Emerging Topics in Computing (2020), DOI:10.1109/TETC.2017.2699169
16. Gelfand I.M., Guberman Sh.A., Izvekova M.L., Keilis-Borok V.I., Ranzman E.Ya. On criteria for high seismicity//Dokl. Academy of Sciences of the USSR (1972), Vol. 202, No. 6, Pp. 1317–1320. [in Russion]
17. Bongard M. M., Vaintzvaig M. N., Guberman Sh. A., Izvekova M. L., Smirnov M. S. Using a learning program to identify oil-bearing reservoirs.//Geology and geophysics (1966), No. 6, Pp.96-105[in Russion]
18. Gvishiani A. D., Soloviev A. A., Dzeboev B. A. Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review//Izvestiya, Physics of the Solid Earth. (2020), Vol. 56, No. 1, Pp. 1-23, DOI:10.1134/S1069351320010048
19. Kossobokov V. G., Shchepalina P. D. Times of Increased Probabilities for Occurrence of World’s Largest Earthquakes: 30 Years Hypothesis Testing in Real Time//Izvestiya, Physics of the Solid Earth (2020), Vol. 56, No. 1, Pp. 36-44. DOI: 10.1134/S1069351320010061
20. Shebalin P. N. The Rise of Earthquake Correlation Range and the Chains of Earthquakes before Large Seismic Events//Izvestiya, Physics of the Solid Earth. (2020), Vol. 56, No.1, Pp. 30-42, DOI:10.1134/S1069351320010139
21. Gzovsky M.V. Fundamentals of tectonophysics, M.: Nauka(1964), 536 p., [in Russian]
22. Riznichenko Yu.V. Problems of seismology, M.: Nauka(1985), 405 p. [in Russian]
23. Atabekov I.U., Sadykov Yu.M. Stress State of the Earth’s Crust in the Western Tien Shan in Central Asia (Uzbekistan): A Mathematical Stress Model//Geotectonics (2022), No.3, pp. 306-320, DOI: 10.1134/S0016852122030037
24. Atabekov I. Earth Crust’s Stresses Variation in Central Asian Earthquake’s Region.//J. Geodesy and Geodynamics (2020),. Vol. 11, Issue 4, July, Pp. 293-299 https://doi.org/10.1016/j.geog.2019.12.005
25. Atabekov I. Numerical models of earthquake’s mechanism//J. Geodesy and Geodynamics (2021), 12, Pp. 148-154, https://doi.org/10.1016/j.geog.2021.03.002
26. Atabekov I.U. Tectonic Earthquake Source Mechanism Model Based on Moment Theory//Izvestiya, Physics of the Solid Earth (2023), vol. 59, №1, Pp. 1–14, https://doi.org/10.1134/S1069351323010019
27. Haykin S.O. Neural Networks and Learning Machines. Third Edition, Pearson Education (2011), 936 p.