Published
2024-05-07
Section
Articles
License
Copyright (c) 2024 Earthquake
This work is licensed under a Creative Commons Attribution 4.0 International License.
Magnetogravimetric study on the Scotia Plate, in the South Atlantic Ocean for the characterization of tsunamis
Arecco Alejandra
Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Geodesia y Geofísica Aplicadas
DOI: https://doi.org/10.59429/ear.v2i1.1880
Keywords: earthquakes; tsunamis; geomagnetic field; 2D gravimetric model; South Atlantic Ocean
Abstract
The marine and coastal environments of the Scotia Sea regions in the Southern Atlantic Ocean and Antarctica are vulnerable to the potentially disastrous effects from seismic activity in the Scotia Arc. This paper presents a magnetogravimetric study of the Scotia Plate for tsunami characterization. The influence of earthquakes on the Geomagnetic Field (GMF) is investigated using data from INTERMAGNET network observatories. A tectonic model from gravimetric data is evaluated using gravity data from NOAA and seismic refraction data from Lamont-Doherty Earth Observatory oceanic surveys. The study also assesses the impact on water level (WL) measured at 6 tide gauge stations in the region obtained from the Intergovernmental Oceanographic Commission (IOC). The WL records collected are filtered and analyzed to identify tsunamis at each station. Cross Wavelet Transform (XWT) is applied, and a frequency analysis of the GMF is conducted to identify specific frequencies during seismic events. A 2D tectonic model is constructed for the North Scotia Ridge using gravimetric and seismic data to characterize structural boundaries that may be activated during seismic events. The results reveal anomalous frequencies in the GMF horizontal component frequency analysis during the November 25, 2013 earthquake, those results shown great data correlation with [1;1.5] hour periods from different observatories in the study area. Gravimetric modeling delineates faults activated during seismic activity and edges of structures potentially activated due to the margin transcurrent and compressional nature. WL anomalies up to 1.30 m are obtained following earthquakes with a Richter scale magnitude greater than 8 Mw. The tsunami propagation speed in the study area averaged 460 km/h, consistent with the expected speed for those depths, except for Puerto Argentino (PA), which exceeded them by 50%.
References
1. Bohoyo F, Galindo-Zaldívar J, Jabaloy A, et al. Extensional deformation and development of deep basins associated with the sinistral transcurrent fault zone of the Scotia-Antarctic plate boundary, in Tectonics of strike-slip restraining and releasing bends, D. Cunningham (editor), and P. Mann, Special Volume of the Geological Society of London 2007.2. Dalziel IWD, Lawver LA, Norton IO, et al. The Scotia Arc: Genesis, Evolution, Global Significance. Annual Review of Earth and Planetary Sciences 2013; 41: 767–793. https://doi.org/10.1146/annurev-earth-050212-124155
3. Yamin MG, Anselmi G. Geología de las placas Scotia y Sandwich, revisión y mapa geológico (Spanish) [Geology of the Scotia and Sandwich plates, review and geological map]. SEGEMAR. Serie de Contribuciones Técnicas, Geología Núm. 8. Instituto de Geología y Recursos Minerales 2020.
4. Beniest A, Schellart WP. A geological map of the Scotia Sea area constrained by bathymetry, geological data, geophysical data and seismic tomography models from the deep mantle, Earth-Science Reviews 2020; Volume 210, 103391. https://doi.org/10.1016/j.earscirev.2020.103391.
5. Dragani WC, D’Onofrio EE, Grismeyer W, et al. Vulnerability of the Atlantic Patagonian coast to tsunamis generated by submarine earthquakes located in the Scotia Arc region. Some numerical experiments. Natural hazards 2009; 49(3), 437-458. https://doi.org/10.1007/s11069-008-9289-4.
6. Pérez I, Dragani W, Oreiro F, et al. Meteotsunamis at the Río de la Plata estuary, Estuarine, Coastal and Shelf Science 2022; 277, Article ID 108064. https://doi.org/10.1016/j.ecss.2022.108064.
7. Dato J, Fiore ME, D´Onofrio E, et al. Comparison of the Extreme Surge Estimation with the Generalized Extreme Value Distribution, Using the Maximum of Positive Storm Surge and skew Surge in two port areas with different hydrodynamic and tidal characteristics, J. of Marine Env. Eng. 2020; Vol 00, pp. 1-10
8. Dragani W, D’Onofrio E, Mediavilla D, et al. The Tsunami Threat - Research and Technology. London, IntechOpen. Morner NA (editor), Tide Gauge Observations of the Indian Ocean Tsunami December 26, 2004, at the Rio de La Plata Estuary, Argentina; 2011, p. 355-369. https://doi.org/10.5772/14652.
9. Dragani WC, D’Onofrio EE, Oreiro F, et al. Meteorological Tsunamis: The US East Coast and Other Coastal Regions. New York City, Springer Cham. Vilibic I, Monserrat S, Rabinovich AB (editors). Simultaneous meteorological tsunamis and storm surges at Buenos Aires coast, southeastern South America; 2015, p. 269-280.
10. Mora MC, Arecco MA, Larocca PA. Aplicación de un SIG junto a un programa de modelado 2D al SE de las Malvinas que caracterizan nuevas fallas para prevención de riesgos de tsunamis (Spanish) [GIS Application with a 2D modeling program to the SE of the Malvinas, that characterize new faults for tsunami risk prevention]. 21th LACCEI International Multi-Conference for Engineering, Education and Technology; 2022; Bogota. Fundacion LACCEI Larrondo Petrie MM , Texier J, Hybrid (editors), 19-21 July 2023. http://dx.doi.org/10.18687/LACCEI2023.1.1.1560
11. Arecco MA, Larocca PA, Oreiro FA, et al. Disturbances in the Geomagnetic Field, Water Level and Atmospheric Pressure associated with Mw> 6.6 earthquakes in the South Atlantic Ocean; Revista Geofísica Internacional 2023. doi.org/10.22201/igeof.2954436xe.2023.62.3.1440
12. Varotsos PA, Sarlis NV, Skordas ES, et al. Seismic Electric Signals: An additional fact showing their physical interconnection with seismicity, Tectonophysics 2013; 589: 116-125. https://doi.org/10.1016/j.tecto.2012.12.020.
13. Hayakawa M, Kasahara Y, Nakamura T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. Journal of Geophysical Research 2010; 115, A9. https://doi.org/10.1029/2009JA015143.
14. Takeuchi A, Okubo K, Takeuchi N. Electric Signals on and under the Ground Surface Induced by Seismic Waves. International Journal of Geophysics 2012; Article ID 270809, 10 pages. https://doi:10.1155/2012/270809
15. Gao Y, Chen X, Hu H, et al. Induced electromagnetic field by seismic waves in Earth's magnetic field. JGR Solid Earth 2014; 119, 5651–5685. https://doi:10.1002/2014JB010962
16. Zhao J, Gao Y, Tang J, et al. Electromagnetic field generated by an earthquake source due to motional induction in 3D stratified media, and application to 2008 Mw 6.1 Qingchuan earthquake. JGR Solid Earth 2021; 126. https://doi.org/10.1029/2021JB022102.
17. Ruiz F, Sánchez M, Martínez P, et al. La estación magnética Zonda: estudio de perturbaciones magnéticas relacionadas con terremotos. San Juan, Argentina (Spanish) [The Zonda magnetic station: study of magnetic disturbances related to earthquakes. San Juan, Argentina]. 2nd Biennial Meeting of Latinmag 2011; Special Issue. Sinito AM(editor). Latinmag Letters, Vol. 1, Special Issue, A16, 1-7. https://www.geofisica.unam.mx/LatinmagLetters/LL11-0102P/A/A16-Ruiz-corregido.pdf.
18. Takla E, Khashaba A, Abdel Zaher M, et al. Anomalous ultra-low frequency signals possibly linked with seismic activities in Sumatra, Indonesia. NRIAG Journal of Astronomy and Geophysics 2018; 7:2, 247-252. https://doi: 10.1016/j.nrjag.2018.04.004.
19. Arecco MA, Larocca PA, Mora MC. Geomagnetismo y su relación con sismos un estudio, en la micro en la Placa de Sándwich del Sur (Spanish) [Geomagnetism and its relationship with earthquakes, a study, in the micro in the South Sandwich Plate]. Revista Defensa Nacional 2020; N°4, 263-281. https://www.undef.edu.ar/wp-content/uploads/2020/10/04_REVISTA-DEFENSA-NACIONAL.pdf
20. Larocca PA, Arecco MA, Mora MC. Wavelet-based Characterization of Seismicity and Geomagnetic Disturbances in the Sandwich del Sur Microplate Area. Geofísica Internacional 2021; 60, N°4, 320-332. http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/2119/1882
21. Pelayo AM, Wiens DA. Seismotectonics and relative plate motions in the Scotia Sea region. Journal of Geophysical Research 1989; 94: 7293-7320.
22. Cunninghan AP, Barker PF, Tomlinson JS. Tectonics and sedimentary environment of the North Scotia Ridge region revealed by side-scan sonar. Journal of Geological Society, 1998; 941–956. https://doi.org/10.1144/gsjgs.155.6.0941
23. Gordon RG, DeMets C, Argus DF, et al. Current Plate Motions, Eos D'ansactions. American Geophysical Union 1988; 69, 1416.
24. Amante C, Eakins BW. ETOPO1, 1 Arc-Minute Global Relief Model Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC 2009; 24. https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.
25. Arecco MA, Ruiz F, Pizarro G, et al. Gravimetric determination of the continental–oceanic boundary of the Argentine continental margin (from 36°S to 50°S). Geophysical Journal International 2016; 204, pp. 366-385. https://doi: 10.1093/gji/ggv433.
26. Ewing JL, Ludwig WJ, Ewing M, et al. Structure of the Scotia Sea and Falkland Plateau. Journal of Geophysical Research 1971; 76 (29), 7118-7137.
27. D'Onofrio EE. Desarrollo de un nuevo sistema de procesamiento de información de marea. (Spanish) [Development of a new tidal information processing system]. Informe Técnico Nº 25/84. Departamento Oceanografía del Servicio de Hidrografía Naval 1984; 167 p.
28. Oreiro FA, D'Onofrio E, Grismeyer W, et al. Comparison of tide model outputs for the northern region of the Antarctic Peninsula using satellite altimeters and tide gauge data. Polar Science 2014; 8(1), 10-23. https://doi.org/10.1016/j.polar.2013.12.001.
29. Grinsted A, Moore JC, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Process. Geophys 2004; 11, 561-566. https://hal.science/hal-00302394/document
30. Nabighian MN, et al. The Historical Development of the Magnetic Method in Exploration. Geophysics 2005; 70, 33-61. https://doi.org/10.1190/1.2133784.
31. Parker RL. A new method for modeling marine gravity and magnetic anomalies. J Geophys Res 1974; 79, 14, 2014-2016. https://doi.org/10.1029/JB079i014p02014.
32. Caratori Tontini F, Graziano F, Cocchi L, et al. Determining the optimal Bouguer density for a gravity data-set: implications for the isostatic setting of the Mediterranean Sea, Geophysical Journal International 2007; 169, 380-388. https://doi.org/10.1111/j.1365-246X.2007.03340.x.
33. Introcaso, A. Significativa descompensación isostática en la Cuenca del Colorado (República Argentina), Revista de la Asociación Geológica Argentina 2003; 58, 474–478. http://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S0004-48222003000300015.
34. Brocher, T.M. Empirical relations between elastic wavespeeds and density in the Earth’s crust, Bull. seism. Soc. Am. 2005; 95, 2081–2092. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/95/6/2081/146858/Empirical-Relations-between-Elastic-Wavespeeds-and?redirectedFrom=fulltext.
35. Jia, Z., Zhan, Z. and Kanamori, H., (2022). Earthquake: A Slow Event Sandwiched Between Regular Ruptures, Geophysical Research Letters, 49, (3). https://doi.org/10.1029/2021GL097104.
36. Truong, H. V. P. Wave-propagation velocity, tsunami speed, amplitudes, dynamic water-attenuation factors. En Proceedings of World Conference on Earthquake Engineering (Red Hook, NY: Curran Associates, Inc.). 2012. p. 1-10. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_0335.pdf
37. Saito, T. and Kubota T. Tsunami modeling for the deep sea and inside focal areas. Annual Review of Earth and Planetary Sciences, 2020, vol. 48, p. 121-145. https://doi.org/10.1146/annurev-earth-071719-054845