Published
2024-05-07
Section
Articles
License
Copyright (c) 2024 Earthquake
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earthquake-induced paleo-landslides in the Tehran Region and its role in assessing the seismic hazard, Iran
Shahryar Solaymani Azad
Seismotectonics and Seismology Department, Geological Survey of Iran, P.O. Box: 13185 1494, Tehran, Iran.
DOI: https://doi.org/10.59429/ear.v2i1.1881
Keywords: coseismic landsliding; Paleo-landslides; seismic hazard; Tehran; Iran
Abstract
In the central portion of the Arabia-Eurasia collision zone, the Tehran domain is positioned at a transitional boundary between seismotectonic zones of the Central Iranian lowland (to the south) and the Alborz highland (to the north). Consequently, numerous destructive seismic events have occurred in this active tectonic domain. This study delves into the tectonic geomorphology of the region within its northern highland domain, specifically focusing on the hanging wall of the E-striking north-dipping North Tehran fault (NTF) zone. Our findings in this northern domain emphasize several prominent topographic scars as significant co-seismic features. These include huge landslides, rockfalls, rock avalanches, and offset geomorphic surfaces and could be present as the main indirect co-seismic morphological features. Within this seismically active region, the extensive dimensions of these geomorphic pieces of evidence can indicate the seismic potential of the Tehran Region to experience really strong earthquakes (i.e. M>7.5). These results contrast with the previous Maximum Credible Earthquake (MCE) magnitude estimated for the Tehran Region (i.e. M~7.2) through different approaches in Seismic Hazard Assessments (SHAs). Consequently, the previous SHAs of the Tehran Region might have underestimated the seismic risk, and therefore, it is necessary to conduct an updated and complementary deterministic SHA based on the more detailed seismogenic geological features in this crucial area. This new approach can be employed in comparable active tectonic regions worldwide to assess existing SHAs.
References
1. Lin, C.W., Liu, S.H., Lee, S.Y., Liu, C.C., 2006. Impacts of the chi-chi earthquake on subsequent rainfall-induced landslides in central Taiwan, Eng. Geol., 86:87–101.2. Chang, K.T., Chiang, S.H., Hsu, M.L., 2007. Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347.
3. Meunier, P., N. Hovius, and A. J. Haines, 2008. Topographic site effects and the location of earthquake induced landslides, Earth Planet. Sci.Lett., 275(3–4), 221–232, doi:10.1016/j.epsl.2008.07.020.
4. Saito, H., Uchiyama, S., Hayakawa, Y.S., Obanawa, H., 2018. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry Prog. Earth Planet Sci., 5, p. 15, 10.1186/s40645-018-0169-6.
5. Cornforth, D. H., 2005. Landslides in practice: investigation, analysis, and remedial/preventative options in soils. Wiley, New York.
6. Keefer, D.K., 1984. Landslides caused by earthquakes. Geological Society of America Bulletin 95(4): 406–421.
7. Harp, E.L., and R.W. Jibson, 1996. Landslides triggered by the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America 86 (1B): 319–332.
8. Rodriguez, C.E., Bommer, J.J., Chandler, R.J., 1999. Earthquake induced landslides 1980–1997. Soil Dynamics and Earthquake Engineering 18, 235–346.
9. Havenith, H.B., Torgoev, A., Braun, A., Schlögel, R., Micu, M., 2016. A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenvironmental Disasters 3(1):6.
10. Martino, S., Lenti, L., Delgado, J., Garrido, J., Lopez-Casado, C., 2016. Application of a characteristic periods-based (CPB) approach to estimate earthquake-induced displacements of landslides through dynamic numerical modelling. Geophys. J. Int., 206, 85–102.
11. Stöcklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG Bull., 52, 1229–1258.
12. Modarres, R. and De Paulo Rodrigues Silva, V., 2007. Rainfall trends in arid and semi-arid regions of Iran, Journal of Arid Environments, 70, 344–355.
13. Agard, P., Omrani, J., Jolivet, L., Mouthereau, F., 2005. Convergence history across the Zagros (Iran): constraints from collisional and earlier deformation. Int. J. Earth Sci. 94, 409–419.
14. Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L., 2008, Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences: Lithos, v. 106, no. 3-4, p. 380-398.doi: 10.1016/ j.lithos.2008.09.008.
15. McQuarrie, N., van Hinsbergen, D.J.J., 2013. Retro-deforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41, 315–318.
16. Solaymani Azad, S., Nemati, M., Abbassi, M.R., Foroutan, M., Hessami, K., Dominguez, S., Bolourchi, M.J., Shahpasandzadeh, M., 2019a. Active –couple indentation in geodynamics of NNW Iran; Evidence from synchronous left- and right-lateral co-linear seismogenic faults in western Alborz and Iranian Azerbaijan domains. Tectonophysics, pp. 1-17, 54. doi:10.1016/j.tecto.2019.01.013.
17. McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., Tealeb, A, 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int., 30, 126–138.
18. Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M.-R., Nankali, H., Hatzfeld, D., Bayer, R., Tavakoli, F., Ashtiani, M., Doerflinger, E., Daignières, M., Collard, P., Chéry, J., 2003. GPS network monitors the Arabia–Eurasia collision deformation in Iran. J. Geod., 77, 411–422.
19. Djamour, Y., 2004. Contribution de la Géodésie (GPS et nivellement) à l’étude de la déformation tectonique et de l’aléa séismique sur la région de Téhéran (montagne de l’Alborz, Iran), PhD, University of Montpellier (France) (in French).
20. Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.-R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., Chéry, J., 2004. Contemporary crustal deformation and plate kinematics in Middle East constrained by GPS measurement in Iran and northern Oman. Geophys. J. Int., 157, 381–398.
21. Khorrami, F., Masson, F., Nilforoushan, F., Mousavi, Z., Nankali, H.R., Saadat, S.A., Vernant, P., Walpersdorf, A., Hosseini, S., Tavakoli, P., Aghamohammadi, A., Alijanzade, M., 2019. An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities, Geoph. J. Int., 209 (3): 1800-1830, https://doi.org/10.1093/gji/ggx126.
22. McKenzie, D., 1972. Active tectonics of the Mediterranean region. Geophys. J. Int., 30, 109–185.
23. Philip, H., Cisternas, A., Gvishiani, A., Gorshkov, A., 1989. The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics, 161, 1–21.
24. Cisternas, A., Philip, H., 1997. Seismotectonics of the Mediterranean region and the Caucasus, in: Giardini, D., Balassanian, S. (Eds.), Historical and Prehistorical Earthquakes in the Caucasus, Kluwer Academic Publishing, Dordrecht, The Netherlands, pp. 39–77.
25. Barka, A., Reilinger R., 1997. Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Ann. Geophys.-Italy, 40 (3): 587–610.
26. Jackson, J., McKenzie, D., 1984. Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophys. J. R. Astron. Soc., 77 (1), 185–264.
27. Solaymani Azad, S., Philip, H., Dominguez, S., Hessami, K., Shahpasandzadeh, M., Foroutan, M., Tabassi, H., Lamothe, M., 2015. Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics, 640–641, 20–38.
28. Ambraseys, N.N., Melville, C.P., 1982. A History of Persian Earthquakes. Cambridge University Press, New York.
29. Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., Priestley, K., 2006. Relocation and assessment of seismicity in the Iran region, Geophysical Journal International. 167 (2), 761–778. https://doi.org/10.1111/j.1365-246X. 2006.03127.x.
30. Bondár, I., Robert Engdahl, E., Villaseñor, A., Harris, J., Storchak, D., 2014. ISC-GEM: Global Instrumental Earthquake Catalogue (1900–2009), II. Location and seismicity patterns. Phys. Earth Planet. Inter., 239, 2–13, doi: 10.1016/j.pepi.2014.06.002.
31. Bolourchi, M. J., 1997. Paleoseismological studies on South Eshtehard fault, SW Tehran, MSc Thesis, Azad University-North Tehran Branch, Iran, in Persian.
32. De martini, P.M., Hessami, K., Pantosti, D., Addezio, G., Alinaghi, H., Ghafory Ashtiani, M., 1998. A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault, Tehran, Iran, Tectonophysics, 287, PP. 187-199.
33. Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M.-R., Feghhi, K., Solaymani, S., 2003. Paleoearthquakes and slip rates of the North Tabriz fault, NW Iran: preliminary results. Ann. Geophys., 46, 903–915.
34. Solaymani Azad, S., Feghhi, K., Shabanian, E., Abbassi, M.R., Ritz, J.-F., 2003. Preliminary Paleoseismological Studies on the Mosha Fault at Mosha Valley. IIEES Special Report 89 (in Persian).
35. Ritz, J.F., Nazari, H., Salamati, R., Shafeii, A., Solaymani, S., Vernant, P., 2006. Active transtension inside Central Alborz: a new insight into the Northern Iran–Southern Caspian geodynamics. Geology, 34, 477–480.
36. Nazari, H., 2006. Analyse de la tectonique récente et active dans l’Alborz Central et la région de Téhéran: Approche morphotectonique et paléoseismologique, University of Montpellier (in French).
37. Solaymani Azad, S., 2009. Evaluation de l’aléa sismique pour les villes de Téhéran, Tabriz et Zandjan dans le NW de l’Iran. Approche morphotectonique et paléosismologique. PhD, University of Montpellier, France (150 pp. (in French and in English)).
38. Solaymani Azad, S., Ritz, J.-F., Abbassi, M. R., 2011. Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): Morphotectonics and paleoseismological investigations. Tectonophysics, 497, 1–14, doi:10.1016/j.tecto.2010.09.013.
39. Meyer, B., Le Dortz, K., 2007. Strike-slip kinematics in Central and Eastern Iran: estimating fault slip-rates averaged over the Holocene, Tectonics, 26, TC5009, doi:10.1029/2006TC002073.
40. Foroutan, M., Sébrier, M., Nazari, H., Meyer, B., Fattahi, M., Rashidi, A., Le Dortz, K., Bateman, M.D., 2012. New evidence for large earthquakes on the Central Iran Plateau: paleoseismology of the Anar fault. Geophys. J. Int., 189 (1), 6–18, 10.1111/j.1365-246X.2012.05365.x.
41. Foroutan, M., Meyer, B., Sébrier, M., Nazari, H., Murray, A.S., Le Dortz, K., Shokri, M.A., Arnold, M., Aumaître, G., Bourlès, D., Keddadouche, K., Solaymani Azad, S., Bolourchi, M.J., 2014. Late Pleistocene–Holocene right slip rate and paleoseismology of the Nayband fault, western margin of the Lut block, Iran. J. Geophys. Res. Solid Earth, 119 (4), 3517–3560.
42. Foroutan, M., 2013, Active tectonics and paleoseismology of strike-slip faults of Central Iran, PhD thesis, Earth Sciences. Universit´e Pierre et Marie Curie - Paris VI, English.
43. Berberian, M., 1994. Natural hazards and the first earthquake catalog of Iran. Historical hazards in Iran prior 1900, I.I.E.E.S. report, vol. 1.
44. Mirzaei, N., Gheitanchi, M.-R., Naserieh, S., Raeesi, M., Zarifi, Z., Tabaei, S.-G., 2003. Basic Parameters of Earthquakes in Iran, Daneshnegar pub., pp. 184 (in Persian).
45. Solaymani Azad, S., Hessami, K., Philip, H., Ritz, J-F., Dominguez, S., Abbassi, M-R., Foroutan, M., Shabanian, E., 2014. Conference Paper: Persia as a Paradise for Paleoseismological Studies, Example: Paleoseismologic and Geodynamic Issues, NW Iran, PATA days, September 21–27, Busan, Korea.
46. Berberian, M., Yeats, R.S., 1999, Patterns of historical earthquake rupture in the Iranian plateau. Bull. Seismol. Soc. Am., 89, 120–139.
47. Philip, H., Avagyan, A., Karakhanyan, A., Ritz, J.-F., Rebai, S., 2001. Estimating slip rates and recurrence intervals for strong earthquakes along an intracontinental fault: example of the Pambak–Sevan–Sunik fault (Armenia). Tectonophysics, 343, 205–232.
48. Shabanian E., Acocella, V., Gioncada, A., Ghasemi, H., Bellier, O., 2012. Structural control on volcanism in intraplate post collisional setting: late Cenozoic to Quaternary examples of Iran and Eastern Turkey. Tectonics, 31, TC3019, doi: 10.1029/2011TC003042.
49. Berberian, M., 2014, Earthquakes and Coseismic Active Faulting on the Iranian Plateau, a Historical, Social and Physical Approach, Developments in Earth Surface Processes, No. 17, Elsevier.
50. Solaymani Azad, S., 2023. Active seismogenic faulting in the Tehran Region, north of Iran; state-of-the-art and future seismic hazard assessment prospects. Tectonophysics, 856. 229843.
51. Rieben, E.H., 1955. The geology of Tehran plain. American Journal of Science 253, 617–639.
52. Tchalenko, J.S., Berberian, M., Iranmanesh, H., Bailly, M., Arsovsky, M., 1974. Tectonic Framework of the Tehran Region. Geol. Surv. Iran. Rep. 29.
53. Tchalenko, J.S., 1975. Seismotectonics framework of the North Tehran fault. Tectonophysics 29, 411–420.
54. Berberian, M., Qorashi, M., Arzhang-ravesh, B., Mohajer-Ashjai, A., 1985. Recent tectonics, seismotectonics and earthquake fault hazard investigations in the greater Tehran region: Contribution to the seismotectonics of Iran: Part V. Geol. Surv. Iran Rep., 56, 316.
55. Abbassi, M.R., Farbod, Y., 2009. Faulting and folding in Quaternary deposits of Tehran’s piedmont (Iran). J. Asian Earth Sci., 34, 522–531.
56. Rezaei, S., Solaymani Azad, S., Kim, Y.-S., Choi. J.-H., 2017. Conference Paper: Active fault studies in the Tehran region, North Central Iran, TRIGGER 1, May 5, Tehran, Iran.
57. Solaymani Azad, S., Bolourchi, M.-J., Oveisi, B., Alimardan, S. Sabour, N, 2019b. Research Report on Seismotectonics and Active Faulting within West Tehran-Karaj Plain, Geol. Surv. Iran (in Persian).
58. Solaymani Azad, S., 2019, Conference Paper: Tectonic geomorphology of highlands in Tehran Region, Iran, TRIGGER International Conference, 8-10 October, Zanjan, Iran.
59. Torabi, M., Fattahi, M., Amini, H., Ghassemi, M.-R., Karimi, N., 2020. OSL dating of landslide-dammed-lake deposits in the North of Tehran, Iran: 958 Rey-Taleghan/Ruyan earthquake, Journal of Quaternary International, 562, 46-57.
60. Bolourchi, M. J., 2022, Map of Tehran landslides, Doi: 1013140/RG, 2.2 21242.98242.
61. Ghorashi, M. and Arzhang Ravesh, B., 1979. Note on Quaternary Faults in the Tehran Region, Geol. Surv. Iran (in Persian).
62. Trifonov, V.G., Hessami, K.T., Jamali, F., 1996. West-Trending Oblique Sinistral-Reverse Fault System in Northern Iran. IIEES Special Publication 75.
63. Ambraseys, N.N., 1963. The Buyin-Zara (Iran) earthquake of September, 1962. A field report: Bull. Seism. Soc. Amer. 53 (4), pp. 705-740.
64. IRSC, 2002, Avaj Earthquake on June 22, 2002, Special Report.
65. IRSC, 2017, Preliminary report on Malard- West Tehran earthquake (M~5.2), December 20, 2017, North Iran.
66. IIEES, 2017, Preliminary report on Malard- West Tehran earthquake (M~5.2), December 20, 2017, North Iran.
67. Solaymani Azad, S., Feghhi, K., 2003. Report of Surface Faulting and Morphotectonics of “Avaj Region” Earthquake on June 22, 2002. IIEES Special Report,http://www.iiees.ac.ir/iiees/English/bank/Avaj/avaj_report.html
68. Solaymani Azad, S., Saboor, N., Roustaei, M., 2017a, Preliminary report on geological observations of the Malard-W Tehran earthquake (M~5.2), December 20, 2017, North Iran, Geol. Surv. Iran (in English and Persian).
69. Hessami, K., 1995. Paleoseismological studies on Kahrizak fault scarp, Research journal of IIEES, 2, 12-14 (in Persian).
70. Nazari, H., Ritz, J.F., Shafei, A., Ghassemi, A., Salamati, R., Michelot, J.L., Massault, M., 2009. Morphological and paleoseismological analyses of the Taleghan fault, Alborz, Iran. Geophysical Journal International 178, 1028–1041.
71. Ritz, J.-F., Nazari, H, Balescu, S., Lamothe, M., Salamati, R., Gassemi, A., Shafei, A., Ghorashi, M., Saidi, A., 2012. Paleoearthquakes of the past 30000 years along the North Tehran Fault (Iran). J. Geophys. Res., 117, B06305, doi: 10.10292012JB009147.
72. Ghodrati Amiri, G., Motamed, R., Rabet Es-Haghi, H., 2008. Seismic Hazard Assessment of Metropolitan Tehran, Iran, Journal of Earthquake Engineering, Vol. 7, Issue 3.
73. Kamranzad, F., Memarian, H., Zare, M., 2020. Earthquake Risk Assessment for Tehran, Iran, ISPRS International Journal of Geo-Information, Vol. 9, Issue 7.
74. Keefer, D.K. 2002. Investigating landslides caused by earthquakes – a historical review. Surveys in Geophysics 23(6): 473–510.
75. Bolt, B., 1988. Earthquake, W. H. Freeman and Co. New York.
76. Montgomery, D. R., 1990. Effects of the Loma Prieta Earthquake, October 17, 1989, San Francisco Bay Area, from California Geology, January 1990, Vol. 43, No. 1.
77. Murphy, W., Petley, D.N., Bommer, J., Mankelow, J.W., 2002. Geotechnical and seismological uncertainty in the assessment of slope stability during earthquakes. Quarterly Journal of Engineering Geology and Hydrogeology 35, 71–78.
78. Trifunac, M. D., and A. G. Brady ,1975. A study on the duration of strong earthquake ground motion, Bull. Seismol. Soc. Am., 65 (3), 581– 626.
79. Jibson, R. W. and Tanyaş, H., 2020. The influence of frequency and duration of seismic ground motion on the size of triggered landslide: A regional view. Engineering geology, 273, 1-10. [105671].
80. Capolongo, D., and Schiattarella, M., 2005. IMPLICATION OF EARTHQUAKE-INDUCED AND TECTONIC EROSION FOR LANDSCAPE EVOLUTION: AN EXAMPLE FROM THE SOUTHERN APENNINES, GNGTS – Atti del 23 Convegno Nazionale / 07.11.
81. Crozier, M. J., 1992. Determination of paleoseismicity from landslides. In Landslides (Glissements de terrain) (D. H. Bell, Ed.), Proceedings of the 6th International Symposium, Christchurch, New Zealand, 1992, vol.2, pp. 1173–1180. A. A. Balkema, Rotterdam.
82. Yamada, M., Matsushi, Y., Chigara, M., Mori, J., 2012. Seismic recordings of landslides caused by Typhoon Talas 2011 Japan, Geophys. Res. Lett., 39 (13).
83. Havenith, H. B., Strom, A., Calvetti, F., Jongmans, D., 2003. Seismic triggering of landslides. Part B: Simulation of dynamic failure processes, Natural Hazards and Earth System Sciences (2003) 3: 663–682.
84. Havenith, H.B.; Torgoev, I.; Meleshko, A.; Alioshin, Y.; Torgoev, A.; Danneels, G., 2006. Landslides in the Mailuu-Suu Valley, Kyrgyzstan - Hazards and Impacts. Landslides, 3, 137–147.
85. Havenith, H.B., Torgoev, A., Schlögel, R., Braun, A., Torgoev, I., and Ischuk, A., 2015. Tien Shan geohazards database: Landslide susceptibility analysis. Geomorphology 249: 32–43.
86. Kincey, Mark E., Rosser, Nick J., Robinson, Tom R., Densmore, Alexander L., Dammar Singh Pujara, Ram Shrestha, Oven, Katie J., Williams, Jack G., Swirad, Zuzanna M., 2021. Evolution of Coseismic and Post-seismic Landsliding after the 2015 Mw 7.8 Gorkha Earthquake, Nepal. J. Geophys. Res. Earth. Surf. 126, e2020JF005803.
87. Kumar, V., Cauchie, L., Mreyen, A.-S., Micu, M., and Havenith, H.-B., 2021. Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania, Nat. Hazards Earth Syst. Sci., 21, 3767–3788, https://doi.org/10.5194/nhess-21-3767-2021.
88. Marc, O., Hovius, N., Meunier, P., Uchida, T., Hayashi, S., 2015. Transient changes of landslide rates after earthquakes, Geology 43 (10): 883–886, https://doi.org/10.1130/G36961.1.
89. Loche, M., Scaringi, G., Yunus, A.P. et al., 2022. Surface temperature controls the pattern of post-earthquake landslide activity. Sci Rep 12, 988. https://doi.org/10.1038/s41598-022-04992-8.
90. Martino, S., Fiorucci, M., Marmoni, G. M., Casaburi, L., Antonielli, B., & Mazzanti, P., 2022. Increase in landslide activity after a low-magnitude earthquake as inferred from InSAR interferometry. Scientific reports, 12(1), 1-19.
91. Shoaei, Z., Ghayoumian, J. (1998). The Largest Debris Flow in the World, Seimareh Landslide, Western Iran. In: Sassa, K. (eds) Environmental Forest Science. Forestry Sciences, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5324-9_57.
92. Entezam Soltani, I., Mirtamiz Dust, M., Mohebi, A., Shemshaki, A., Alinia, A., Daneshmand, H., 2018. Landslide zonation map of Iran, Geological Survey of Iran.
93. Zare’, M., 1993. Macrozonation of Landslides for the Manjil, Iran 1990 Earthquake, Third International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, June 1-4, 1993, Paper No. 3.23.
94. Mahdavifar, M. R., Solaymani, S., and Jafari, M. K., 2006. Landslides triggered by the Avaj, Iran earthquake of June 22, 2002, Eng.Geol., 86, 2–3, 166–182.
95. Asadi, Z. and Zare, M., 2014. Estimating magnitudes of prehistoric earthquakes and seismic capability of fault from landslide data in Noor valley (central Alborz, Iran), Natural Hazards 74 (2), DOI:10.1007/s11069-014-1186-4.
96. Solaymani Azad, S., Saboor, N., Moradi, M., Ajhdari, A., Youssefi, T., Mashal, M., Roustaie, M., 2017b. Preliminary report on geological features of the Ezgaleh-Kermanshah earthquake (M~7.3), November 12, 2017, West Iran, Geological Survey of Iran.
97. Goorabi, A., 2020. Detection of landslide induced by large earthquake using InSAR coherence techniques – Northwest Zagros, Iran, Egyptian Journal of Remote Sensing and Space Science 23(2), DOI:10.1016/j.ejrs.2019.04.002.
98. Malamud, B. D., Turcotte, D. L., Guzzetti, F., Reichenbach, P., 2003. Quantification of earthquake induced landslides, Geophysical Research Abstracts, Vol. 5, 04367.
99. Veisseh, S., 1990. Properties and applications of Alborz green Tuffs, BHRC, No. 115, in Persian.
100. Montazer Ghaem, S. and Mohammadi Asl, Z., 2020. Identification of the Tehran City’s Landslides, ISBN: 978-622-99197-1-2, Tehran Disaster Mitigation and Management Organization, Tehran, Iran (in Persian).
101. Haghshenas, E., 2023. Report on Landsliding in the Tehran Region, Tehran Disaster Mitigation and Management Organization, Tehran, Iran (in Persian).