Published
2024-05-07
Section
Articles
License
Copyright (c) 2024 Earthquake
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tectonic activity in Gulf of Guinea and Sub-Sahara West Africa: A validation of Freeth (1977) using focal mechanism solutions
Ayodeji Adekunle Eluyemi
Centre for Energy Research and Development (CERD), Obafemi Awolowo University (OAU), Ile-Ife, Osun State, Nigeria.
DOI: https://doi.org/10.59429/ear.v2i1.1883
Keywords: membrane tectonic; regional stress regime; gulf of Guinea
Abstract
Fault plane solutions for a group of 104; 4.0 ≤ Mw ≤ 7.1 earthquakes between January 1979 and December 2016, extracted from the Global Centroid Moment Tensor Project catalog. Were used to investigate the regional tectonic stress regime of the Gulf of Guinea region. The idea is to validate the theory of membrane tectonics put forward by Freeth (1977)[1] in which the tectonic of the Gulf of Guinea and the sub-Sahara West Africa region were described based on Freeth (1977)[1]. The tectonic of the Gulf of Guinea and the sub-Sahara West Africa region are based on the movement of the African plate, we emphasized the use of rigorous statistical tests to decide on the quality and variability of the earthquake focal mechanisms (FMSs) utilized for the stress tensor inversion analysis. To constrain our analysis, we have applied both the Algorithm of Michael and Gauss technique in our stress tensor inversion analysis of FMS obtained from the region, and the results are found to be coherent and in good agreement with each other. Both Michael (1984)[2] and Zalohar and Vrabec (2007)[3] techniques show that the regional tectonic stress regime of the Gulf of Guinea and the sub-Sahara West Africa is extensional, which is in good agreement with the work of Freeth (1977)[1]. However, our investigation concluded that the orientation of the extensional stress regime is the same as the orientation of the movement of the African plate, which is towards the Euro-Asia plate.
References
1. Freeth, S. J. (1977). Tectonic Activity in West Africa and the Gulf of Guinea Since Jurassic Times-An Explanation Based On Membrane Tectonics. Earth and Planetary Sciences, Letter, pp. 298-300.2. Michael, A. J. (1984). Determination of stress from slip data: Faults and folds, J. Geophys. Res. 89, 11,517–11,526.
3. Zalohar, J. and Vrabec, M. (2007). Paleostress Analysis of heterogeneous Fault-Slip Data: The Gauss Method. Journal of Structural Geology. 29, 1798-1810. doi:10.1016/j.jsg.2007.06.009
4. Turcotte , D.L, and Oxburgh, E.R. (1973). Mid-plate Tectonics. Nature, Vol.244.pp.337-339.
5. Turcotte, D. L. (1974). Membrane tectonics, Geophys J. R. Astron Soc., Vol.36 pp. 33-42
6. Oxburgh, E. R., and Turcotte, D. L. (1974). Membrane Tectonics and the East African rift.Earth and Planetary Science Letters, 22, pp.133-140.
7. Eluyemi, A.A., Sharma, S., Olotu, S.J., Falebita, D.E., Adepelumi, A.A., Tubosun, I.A., Ibitoye, F.I., and Baruah, S. (2020a). A GIS-based site investigation for Nuclear Power Plants (NPPs) in Nigeria, Scientific Africans,Elsevier Publishers, Vol. 7, pp 1-15.https://doi.org/10.1016/j.sciaf.2019.e00240
8. Eluyemi, A. A., Ibitoye, F.I., and Baruah, S. (2020b) Preliminary analysis of probabilistic seismic hazard assessment for nuclear power plantsite in Nigeria. Scientific Africans, Elsevier Publishers, Vol. 8, pp. 1-12. https://doi.org/10.1016/j.sciaf.2020.e00409
9. Eluyemi, A. A., Awosika, D. D., Adebisi, O. D., Isreal O. O. and Ibitoye, F.I., Baruah, S. (2022b). Alternative Method of Seismic Hazard Assessment of Moderate to Aseismic Region with interest to Nuclear Power Plant Siting. In Jelena Purenovic (Ed). Research Developments in Science and Technology Vol. 8, Page 177-181 https://doi.org/10.9734/bpi/rdst/v8/2742C
10. Delvaux, D. and Barth, A. (2010). African Stress Pattern from Formal Inversion of Focal Mechanism Data. Tectonophysics 482, 105-128. doi:10.1016/j.tecto.2009.05.009.
11. Eluyemi, A. A, Baruah, S., Sharma, S., and Baruah, S. (2019a).Recent Seismotectonic Stress Regime of most Seismically active zones of Gulf of Guinea and its Kinematic implications on the adjoining sub-Sahara West African region, Annals of Geophysics, Vol.62; Doi: 10.4401/ag-7877
12. Giardini, D. (1984). Systematic analysis of deep seismicity: 200 centroid moment tensor solutions for earthquakes between 1977 and 1980, Geophys. J. Roy. Astr. S. 7, 883–914.
13. Frohlich, C., Coffin, M. F., Massell, C., Mann, P., Schuur, C. L., Davis, S. D., Jones, T and and Davis, S. D. (1999). How well constrained are wellconstrained T, B, and P axes in moment tensor catalogs? J. Geophys. Res. 102, 5029–5041.
14. Lu, Z., and Wyss, M. (1997). Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions, J. Geophys. Res. 101, 803–816.
15. Musumeci, C., Malone, S. D., Giampiccolo, E. and Gresta, S. (2000). Stress tensor computations at Mount St. Helens (1995–1998), Ann. Geofis. 43, 889–904.
16. Sánchez, J. J., Wyss, M., and McNutt, S. R. (2004). Temporal-spatial variations of stress at Redoubt volcano, Alaska, inferred from inversion of fault plane solutions, J. Volcanol. Geoth. Res. 130, 1–30.
17. Sanchez, J. J. and Nuuez-Cornu, F. J. (2009). Sesmicity and Stress in a Tectonically Complex Region: The Rivera Fracture Zone, the Rivera-Cocos Boundary, and the Southwestern Jalisco Block, Mexico. Bulletin Seismological Society of America, 99 (5), 2771-2783. doi:10.1785/0120080350
18. Eluyemi, A. A., Baruah, S., and Baruah, S. (2019b). Empirical relationships of earthquake magnitude scales and estimation of Guttenberg–Richter parameters in the gulf of Guinea region, Scientific African, Elsevier Publishers, Vol. 6, pp. 1-8. https://doi.org/10.1016/j.sciaf.2019.e00161
19. Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825-2852. doi: 10.1029/JB086Ib04p02825
20. Ekström, G., Nettles, M. and Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9. doi:10.1016/j.pepi.2012.04.002
21. Michael, A. J. (1987). Stress Rotation during the Coalinga After Shock Sequence. Journal of Geophysical Research. 92 (B8), 7963-7979.
22. McKenzie, D. P. (1969). The relationship between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am. 59, 591–601.
23. Yin, Z. M., and Ranalli, G. (1993). Determination of tectonic stress field from fault slip data: Toward a probabilistic model, J. Geophys. Res. 98, 12,165–12,176.
24. Ekström, G., Nettles, M. and Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9. doi:10.1016/j.pepi.2012.04.002
25. Eluyemi, A. A., Baruah, S., and Baruah, S. (2019b). Empirical relationships of earthquake magnitude scales and estimation of Guttenberg–Richter parameters in the gulf of Guinea region, Scientific African, Elsevier Publishers, Vol. 6, pp. 1-8. https://doi.org/10.1016/j.sciaf.2019.e00161
26. Debasis, D. M, Satyapriya, B., Manoj, K. P, and Eluyemi A. A. (2021). Possible depth and source localization of seismic anisotropy beneath Shillong Plateau and Himalayan foredeep region: An implication towards deformation mechanisms, Geological Journal, (special issue) https://doi.org/10.1002/gj.4334
27. Eluyemi, A. A., Awosika, D. D., Adebisi, O. D. and Baruah, S. (2022a). Time-lapse Seismicity Study of the sub-Sahara West Africa and the Gulf of Guinea region. In P. Elangovan (Ed). Research Developments in Science and Technology (pp. 65-72). BP International: doi.org/10.9734/bpi/rdst/v1/2741c
28. Davis, S. D., and Frohlich, C. (1995). A comparison of moment tensor solutions in the Harvard CMT and USGS catalogs, EOS Trans. American Geophysical Monograph 76, F381.
29. Karner, G. (1997). Constraints on Macquarie Ridge tectonics provided By Harvard focal mechanisms and telesiesmic earthquake locations. J. Geophys. Res. 102 (B3), 5029-5041.