Seismotectonic Stress Regime and Airborne-Gravity Lineament Investigation of the Caribbean region and its Kinematic implications
Ayodeji AdekunleEluyemi
Division of Environment and Earth Science., Centre For Energy Research and Development (CERD), Obafemi Awolowo University (OAU), Ile-Ife, Nigeria
DOI: https://doi.org/10.59429/ear.v1i1.97
Keywords: Caribbean region, Stress tensor inversion, Airborne gravity geophysical investigation
Abstract
The tectonic stress regime of the Caribbean region has been studied by stress tensor inversion analysis for the area bounded by Latitudes 17.32o to 23.79o N and Longitudes 81.47o to -60.56o E. A total of two hundred and twenty (220) fault plane solutions (FPS), made up of the seismic (earthquake) events that have occurred in the region of the study were found on the data catalog of the project website of the global centroid moment tensor, were employed in this study. To characterize the stress regimes of the region of study, the classification of the region based on the global moment tensor project is as follows: Cuba-zone, Haiti-zone, Dominican-republic, Monapassage, Puerto Rico, Virgin-Island and the Leeward Island. The gravity geophysical method revealed the presence of multiple or swarms of fractured lines within the same geographical range of study which might have developed over the years as a result of the interaction and coupling effect of the plate boundaries that have close proximity to the region of study. The seismicity pattern indicates that none of the provinces or countries located within the Caribbean region is devoid of large-magnitude earthquake occurrences capable of wreaking severe havoc on the immediate environment. Obviously, our stress tensor inversion result indicates two types of stress regimes namely compression and the strike-slip with different orientations. Cuba-zone, Haiti-zone, Dominican Republic, Monapassage, and Leeward Island are governed mainly by compression stress regimes. In contrast, the strike-slip stress regimes mainly govern the Puerto Rico and the Virgin Island.
References
1.Abers, G. A. and J. W. Gephart (2001). Direct Inversion of Earthquake First Motions for Both The Stress Tensor and Focal Mechanisms and Application to Southern California. Journal of Geophysical Research, 106 (B11), 26,523-26,540.
2.Adams, A. N., D. A. Wiens, A. A. Nyblade, G. G. Euler, P. J. Shore, and R. Tibi (2015). Lihosphereic Instability and the Source of the Cameroun Volcanic Line: Evidence from Rayleigh Wave Velocity Tomography. Journal of Geophysical Research: Solid Earth, 120 (3), 1708-1727.
3.Affam, M. and J. Achibald (2012). In-Situ Stress Determination at the Ashanti Mine. IJMMP, 3 (1), 1-12.
4.Ajama, O.D., M.O. Awoyemi, A.B. Arogundade, O.A. Dasho, S.C. Falade, O.S. Hammed, O.H. Shode (2021). Deep crustal network of the equatorial Atlantic fracture zones in southern Nigeria. Results Geophys. Sci. 8, 100027.
5.Akpan, O. U., M. A. Isogun, T. A. Yakubu, A. A. Adepelumi, C. S. Okereke, A. S. Oniku, and M. I. Oden (2014). An Evaluation of The 11th September, 2009 Earthquake and Its Implication For Understanding The Seismotectonics of South Western Nigeria. Open Journal of Geology, 4, 542-550. doi:10.4236/ojg.2014.410040
6.Amponsah, P. E. (2004). Seismic Activity In Ghana: Past, Present and Future. Annals of Geophysics, 47 (2 / 3), 539-543.
7.Angelier, J. and S. Baruah (2009). Seismotectonics In Northeast India : A Stress Analysis of Focal Mechanism Solutions of Earthquakes and Its Kinematic Implications. Geophysical Journal International, 178 (1), 303–326,https://doi.org/10.1111/j.1365-246X.2009.04107.x
8.Arogundade A.B., M.O. Awoyemi, O.S. Hammed, S.C. Falade, O.D. Ajama (2022). Structural investigation of Zungeru-Kalangai fault zone and its environ, Nigeria using aeromagnetic and remote sensing data, Heliyon, 8(3), e09055.
9.Awoyemi, M.O., O.D. Ajama, O.S. Hammed, A.B. Arogundade, S.C. Falade, (2017). Geophysical mapping of buried faults in parts of Bida Basin, North Central Nigeria. Geophys. Prospect. 66, 40–54.
10.Bacon, M. and A. O. Quaah (1981). Earthquake Activity in Southeastern Ghana (1977-1980). Bulletin of the Seismological Society of America, 71 (3), 771-785.
11.Baruah, S., S. Baruah and J. R. Kayal (2013). State of Tectonic Stress In Northeast India and Adjoining South Asia Region: An Appraisal. Bulletin of Seismological Society of America, 103 (2A), 894-910. https://doi.org/10.1785/0120110354
12.Blakely, R.J. and R.W. Simpson (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 51 (7), 1494–1498.
13.Blundell, D. J. (1976). Active Faults Iin West Africa. Earth and Planetary Science, 31, 287-290.
14.Briggs, I.C. (1974). Machine contouring using minimum curvature. Geophysics 39, 39–48.
15.Brown, J. and J. Fairhead (1983). Gravity study of the Central African Rift System: A model of continental disruption, In tThe Ngaoundere and Abu Gabra Rifts. Tectonophysics, 94, 187–203.
16.Burke, K .C. and A. J Whiteman (1973). Uplift, Rifting and The Break-up of Africa. In Tarling, D.H and Runcorn, S. K. (Eds.), Implications of Continental Drift to the Earth Sciences, 735-755.
17.Burke, K. C., T. F. J. Dessauvagie and A. J. Whiteman (1971). Opening of the Gulf of Guinea and geological history of the Benue Depression and Niger Delta. Nature, Physical Science, 233, 51-55.
18.Burke, K. C., T. F. J. Dessauvagie and A. J. Whiteman (1972). Geological history of the Benue Valley and adjacent Areas. African Geology, 187.
19.Case, J. E., MacDonald. W. D., and Fox, P. J. (1990). Caribbean crustal provinces; seismic and gravity evidence. In: The Caribbean Region. The Geology of North America, Boulder, Colorado, Dengo, G., Case, J.E. (eds.), Geological Society of America, Vol. H, 1536 .
20.Coblentz, D. D., R. M. Richardson and M. Sandiford (1994). On the Potential energy of the Earth’s Lithosphere, Tectonophysics, 13 (4), 929-945. https://doi.org/10.1029/94TC01033
21.Davis, S. D. and C. Frohlich (1995). A Comparison of Moment Tensor Solutions in the Harvard CMT and USGS Catalogs. EOS Trans. American Geophysical Monographs 76, F381.
22.Delvaux, D. and A. Barth (2010). African Stress Pattern from Formal Inversion of Focal Mechanism Data. Tectonophysics 482, 105-128. doi: 10.1016/j.tecto.2009.05.009.
23.DeMets, C., (2001). A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American volcanic arc. Geophys. Res. Lett. 28 (21), 4043–4046.
24.de-Vicente, G., S. Cloetingh, A. Munoz-Martin, A. Olaiz, D. Stitch, R. Vegas, J. Galindo-Zaldivar and J. Fernandez-Lozano (2008). Inversion of Moment Tensor Focal Mechanism for Active Stresses around the Micro continent Iberia: Tectonic Implications. Tectonics, 27, 1-22. Doi:10.1029/2006TC002093
25.Diebold, J. and l. P. Driscol, (1999). New insights on the formation of the Caribbean basalt province revealed by multichannel seismic images of volcanic structures in the Venezuelan Basin: In: Caribbean Sedimentary Basins, Sedimentary Basins of the World, Mann, P. (ed.), Elsevier, 561589 https://doi.org/10.1785/0220130189
26.Dorbath, C., L. Dorbath, J. D. Fairhead and G. W. Stuart (1986). A Teleseismic Delay Time Study Across The Central African Shear Zone In The Adamawa Region of Cameroon, West Africa. Geophysical Journal International. 86 (3), 751-760.
27.Dziewonski, A. M., T. A. Chou and J. H. Woodhouse (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825-2852. doi: 10.1029/JB086Ib04p02825.
28.Ekström, G., M. Nettles and A. M. Dziewonski (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9. doi:10.1016/j.pepi.2012.04.002.
29.Eluyemi, A. A., Baruah, S., Sharma, S., and Baruah, S. (2019a). Recent Seismotectonic Stress regime of most seismically active zones of the Gulf of Guinea and its kinematic implications on the adjoining region of the sub-Sahara West African region. Annals of Geophysics, Vol. 62. pp. 1-13. Doi: 10.4401ag-7877.
30.Eluyemi, A. A., Baruah, S., and Baruah, S. (2019b). Empirical relationships of earthquake magnitude scales and estimation of Guttenberg–Richter parameters in gulf of Guinea region, Scientific African, Elsevier Publishers, Vol. 6, pp. 1-8. https://doi.org/10.1016/j.sciaf.2019.e00161
31.Eluyemi, A.A., Sharma, S., Olotu, S.J., Falebita, D.E., Adepelumi, A.A., Tubosun, I.A., Ibitoye, F.I., and Baruah, S. (2020a). A GIS-based site investigation for Nuclear Power Plants (NPPs) in Nigeria, Scientific Africans, Elsevier Publishers, Vol. 7, pp 1-15.https://doi.org/10.1016/j.sciaf.2019.e00240
32.Eluyemi, A. A., Ibitoye, F.I., and Baruah, S. (2020b) Preliminary analysis of probabilistic seismic hazard assessment for nuclear power plant site in nigeria. Scientific Africans, Elsevier Publishers, Vol. 8, pp. 1-12.https://doi.org/10.1016/j.sciaf.2020.e00409.
33.Eluyemi, A. A., Awosika, D. D., Adebisi, O. D. and Baruah, S. (2022a). Time-lapse Seismicity Study of the sub-Sahara West Africa and the Gulf of Guinea region. In P. Elangovan (Ed). Research Developments in Science and Technology (pp. 65-72). BP International: doi.org/10.9734/bpi/rdst/v1/2741c
34.Eluyemi, A. A., Awosika, D. D., Adebisi, O. D., Isreal O. O. and Ibitoye, F.I., Baruah, S. (2022b). Alternative Method of Seismic Hazard Assessment of Moderate to Aseismic Region with interest to Nuclear Power Plant Siting. In Jelena Purenovic (Ed). Research Developments in Science and Technology Vol. 8, Page 177-181 https://doi.org/10.9734/bpi/rdst/v8/2742C
35.Fittion, J. G. (1980). The Benue Trough and Cameroun Line - A Migrating Rift System In West Africa. Earth and Planetary Science Letters, 51, 132-138. https://doi.org/10.1016/0012-821X(80)90261-7
36.Fomine, F. L. M. (2011). The Strange Lake Nyos Co2 Gas Disaster: Impact and The Displacement and Return of the Affected Communities. The Australasian Journal of Disaster and Trauma Studies. ISSN: 1174 – 4707.
37.Freeth, S. J. (1978). Tectonic Activity In West Africa and The Gulf of Guinea Since Jurassic Times-An Explanation Based On Membrane Tectonics. Earth and Planetary Sciences, Letter, 298-300. https://doi.org/10.1016/0012-821X(78)90103-6
38.Frohlich, C., M. F. Coffin, C. Massell, P. Mann, C. L. Schuur, S. D. Davis, T. Jones and G. Karner (1997). Constraints on Macquarie Ridge tectonics provided By Harvard focal mechanisms and telesiesmic earthquake locations. J. Geophys. Res. 102 (B3), 5029-5041.
39.Fullea, J., M. Fern´andez and H. Zeyen (2008). FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies, application to the Atlantic-Mediterranean transition zone. Comput. Geosci. 34 (12), 1665–1681.
40.Giunta, G. and E. Oliveri (2009). Some remarks on the Caribbean Plate kinematics: facts and remaining problems. In: The Origin and Evolution of the Caribbean Plate, James, K. H., Lorente, M. A. & Pindell, J. L. (eds). Geological Society, London, Special Publications, 328 5
41.Grant, N. K. (1971). South Atlantic, Benue Trough, and Gulf of Guinea Cretaceous Triple Junction. Bulletin of Geological Society of America, 82 (8), 2295-2298. https://doi.org/10.1130/0016-7606(1971)82[2295:SABTAG]2.0.CO;2
42.Gubin, I. E. (1960). Regularities In Seismic Manifestations of Tajikistan. Academy of Science, Moscow, 464.
43..Heidbach, O., M. Rajabi, K. Reiter, M. Ziegler and WSM Team (2016). World Stress Map Database Release 2016. GFZ Data Services. doi: 10.5880/WSM. 2016.001.
44.Isacks, B., J. Oliver and L. R. Skyes (1968). Seismology and The New Global Tectonics. Journal of Geophysical Research, 73, 5855-5899.
45.Juner, N. R. (1941). The Accra Earthquake of 22nd June, 1939. Gold Coast Geological Survey Bulletin, 13.
46.Kiratzi, A. A. (1999). Stress Tensor Inversion In Western Greece Using Earthquake Focal Mechanisms From The Kozani-Grevena, 1995 Seismic Sequence. Annal Di Geofisica, 42,(4).
47.Kreemer, C., G. Blewitt and E. C. Klein (2014) A Geodetic Plate Motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15, 3849-3889. doi: 10.1002/2014GC005407.
48.Kutu, J. M. (2013). Seismic and Tectonic Correspondence of Major Earthquake Region In Southern Ghana With Mid-Atlantic Transform-Fractured Zones. International Journal of Geosciences, 1326-1332.
49.Lister, C. R. (1975). Gravitational Drive on Oceanic Plates Caused by Thermal Contraction: Nature, 257, 663-665.
50.Louvari, E. K. and A. A. Kiratzi (1997). Rake: A Windows Program To Plot Earthquake Focal Mechanisms and The Orientation of Principal Stresses. Computer and Geo-science, 2 (8), 851-857. https://doi.org/10.1016/S0098-3004(97)00070-8
51.Martinez-Garzon, P., G. Kwiatek, M. Ickrath and M. Bohnoff (2014). A Matlab Package For Stress Inversion Combining Solid Classic Methodology, A New Simplifies User Handling and A Visualization Tool. Seismological Research Letter, 85 (4), 896-904.
52.Mascle, J., G. P. Lohmann and M. Moullade (Eds.) (1998). In-Situ Stress at the Cote D’Ivoire-Ghana Marginal Ridge from FMS Logging In Hole 959D1. Proceedings of the Ocean Drilling Program Scientific Results, 159.
53.Mckenzie, D. P. (1969). Speculations on The Consequences and Causes of Plate Motions. Geophys. J. R. astr. Soc. (18), 1-32. doi: 10.1111/j.1365-246X.1969.tb00259.x.
54.Michael, A. J. (1984). Determination of Stress From Slip Data: Faults and Folds. Journal of Geophysical Research. 89 (B13), 11,517-11,526.
55.Michael, A. J. (1987). Stress Rotation During The Coalinga After Shock Sequence. Journal of Geophysical Research. 92 (B8), 7963-7979.
56.Mogi, K. (1974). Active Periods in the World’s Chief Seismic Belts. Tectonophysics, 22, 265-282. https://doi.org/10.1016/0040-1951(74)90086-9
57.Molnar, P., and L.R. Sykes (1969). Tectonics of the Caribbean and Middle America regions from focal mechanisms and seismicity. Geol. Soc. Am. Bull. 80, 1639–1684.
58.Nabighian, M.N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 507–517.
59.Nikonov, A. A. (1976). Migration of Large Earthquakes Along The Great Fault Zones In Middle Asia. Tectonophysics, 31, 55-60. https://doi.org/10.1016/0040-1951(76)90113-X
60.Palvis, N.K., S.A. Holmes, S.C. Kenyon, J.K. Factor (2008). An earth gravitational model (EGM 2008) to degree 2160. In: Presented at the EGU General Assembly. Vienna, Austria, April 13-18.
61.Parsons, B. and F. M. Richter (1980). A Relation between Driving Force and Geoid Anomaly Associated with mid-ocean ridges. Earth and Planetary Science Letters, 51, 445-450.
62.Radhakrishna, I.V. and S.K.G., Krishnamacharyulu (1990). Polyfit: a Fortran 77 program to fit a polynomial of any order to potential field anomalies. J. Assoc. Explor. Geophys. 11, 99–105.
63.Ramdani, M., B. Tadili and S. D. Ben (1984). A Strong Earthquake Strikes Guinea (22nd DECEMBER 1983). Bulletin of the Seismological Society of America, 74 (5), 2045-2047.
64.Rhodes, R. C. (1971). Structural Geometry of Subvolcanic Ring Complexes As Related To Pre-Cenozoic Motions of Continental Plates. Tectonophysics, 12, 111-117. https://doi.org/10.1016/0040-1951(71)90012-6
65.Sanchez, J. J. and F. J. Nuuez-Cornu (2009). Sesmicity and Stress in a Tectonically Complex Region: The Rivera Fracture Zone, the Rivera-Cocos Boundary, and the Southwestern Jalisco Block, Mexico. Bulletin Seismological Society of America, 99 (5), 2771-2783. doi:10.1785/0120080350
66.Shimazaki, K. (1976). Intra-plate Seismicity and Intra-plate Earthquake. Historical Activity In South Western Japan. Tectonophysics, 33, 33-42. https://doi.org/10.1016/0040-1951(76)90050-0
67.Stephan, J. F., R. Blanchet, B. Mercier De Lepinay (1986). Northern and southern Caribbean festoons (Panama, Colombia, Venezuela, Hispaniola, Puerto Rico) interpreted as subductions induced by the east west shortening of the Pericaribbean continental frame. In: The Origin of Arcs, Wezel, F. C. (ed.). Development in Geotectonics, 21. Elsevier, New York, 3551.
68.Suh, C. E., R. S. J. Sparks, J. G. Fitton, S. N. Ayonghe, C. Annen, R. Nana and A. Luckman (2003). The 1999 and 2000 Eruptions of Mount Cameroon: eruption behavior and petrochemistry of lava. Bull Volcanol, 65, 267-281. doi. 10.1007/s 00445-002-0257-7.
69.Tirifu, C. I. and V. Shumila (2011). The Analysis of Stress Tensor Determined From Seismic Moment Tensor Solutions At Goldex Mine Quebec. American Rock Mechanics Association, 11-584.
70.Tokam, K. A. P., C. T. Tabod, A. A. Nyblade, J. Julia, D. A. Wiens and M. E. Pasyanos (2010). Structure of The Crust Beneath Cameroon, West Africa, From The Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions. Geophysical Journal 183 (2), 106-1076. https://doi.org/10.1111/j.1365-246X.2010.04776.x
71.Trenkamp, R., J.N. Kellogg, J.T. Freymueller, H.P. Mora (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. S. Am. Earth Sci. 15, 157–171
72.Turcotte, D. L and E. R. Oxburgh (1976). Stress Accumulation In The Lithosphere. Tectonophysic. 35 (1–3), 183-199.https://doi.org/10.1016/0040-1951(76)90037-8
73.van Benthem, S., R. Govers, W. Spakman, and R. Wortel (2013). Tectonic evolution and mantle structure of the Caribbean. J. Geophys. Res. Solid Earth 118 (6), 3019–3036.
74.van Benthem, S., Govers, R., Wortel, R., 2014. What drives microplate motion and deformation in the northeastern Caribbean plate boundary region? Tectonics 33, 1–24.
75.Wright, J. B. (1968). South Atlantic Continental Drift and the Benue Trough. Tectonophysics, 6 (4), 273-352. https://doi.org/10.1016/0040-1951(68)90046-2
76.Yamaji, A. and K. Sato (2006). Distance For The Solution of Stress Tensor Invasion In Relation to Misfit Angles That Accompany The Solutions. Geophysical Journal International, 167(2), 933-942. doi:10.1111/j.1365-246X.2006.03188.x
77.Yarwood, D. R. and D. I. Doser (1990). Deflection of Oceanic Transform Motion at a Continental Margin as deduced from Waveform inversion of the 1939 Accra, Ghana earthquake. Tectonophysics, 172 (3-4), 341-349. https://doi.org/10.1016/0040-1951(90)90040-F
78.Zalohar, J. and M. Vrabec (2007). Paleostress Analysis of heterogeneous Fault-Slip Data: The Gauss Method. Journal of Structural Geology. 29, 1798-1810. doi:10.1016/j.jsg.2007.06.00