Published
2024-02-01
Section
Articles
How to Cite
单一及组合物理过滤材料对废水理化及微生物特性的影响
Akinbuwa Olumakinde
阿德库勒阿贾辛大学
Agele Samuel
联邦理工大学
DOI: https://doi.org/10.59429/hjfz.v5i4.1348
Keywords: 黄瓜;微生物分析;市政溪流
Abstract
农业废水再利用是增加农业水资源的一种可行的选择。已经采用了几种方法来改善废水质量,以便在农业中安全再利 用。然而,这些方法很复杂,当地农民很难使用。因此,进行了一项研究,以检查简单且经济有效的废水处理方法对废水理 化和微生物财产的影响。这项研究是在阿库尔联邦理工大学作物、土壤和害虫管理系(FUTA)进行的。废水包括:鱼塘污水 和市政污水。用于废水物理过滤的材料包括:花岗岩、稻壳、木炭和纯河沙。处理前后,对废水进行化学分析(pH、电导率 (EC)、硝酸盐、Cl、P、Ca 和 Mg)、物理分析(总固体、总溶解固体和总悬浮固体)和微生物分析(总粪便大肠杆菌、细 菌、酵母和真菌)。结果表明,物理过滤材料的单独应用和联合应用显著降低了废水中的微生物负荷。同样,在单一和组合应 用中,使用过滤材料过滤的水的总固体(TS)、总悬浮固体(TSS)和总溶解固体(TDS)显著减少。未经处理的鱼塘废水(T1) 中记录了最高的有效 pH 值、EC 和氯化物,而稻壳过滤的鱼塘污水(T5)中记录的最高的有效 Ca 和 Mg。稻壳过滤的城市废 水(T11)中记录到最高的有效硝酸盐,而 T5和 T11中获得最高的有效 P。这项研究的结果表明,使用单一过滤材料和组合过 滤材料过滤的废水的质量参数有所改善。
References
[1] Thapliyal, A., Vasudevan, P., Dastidar, M. G., Tandon, M. and Mishra, S. (2011). Irrigation with domestic wastewater: responses on growth and yield of ladyfinger (Abelmoschus esculentus) and on Soil Nutrients. Journal of
Environmental Biology. 32: 645-651. [2] Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. and Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental pollution, 152 (3), 686-692. [3] Alfonso-Muniozguren, P., Lee, J., Bussemaker, M., Chadeesingh, R., Jones, C., Oakley, D. and Saroj, D. (2018). A combined activated sludge-filtration-ozonation
process for abattoir wastewater treatment. Journal of Water Process Engineering, 25 (February), 157–163. [4] Zahedi, A., Monis, P., Gofton, A. W., Oskam, C. L., Ball, A., Bath, A., Bartkow, M., Robertson, I. and Ryan, U. (2018). Cryptosporidium species and subtypes in animals
inhabiting drinking water catchments in three states across Australia. Water Resources, 134, 327–340. [5] Heidarpour, M., Mostafazadeh-Fard, B., Koupai, J. A. and
Malekian, R. (2007). The effects of treated wastewater on
soil chemical properties using subsurface and surface
irrigation methods. Agricultural Water Management, 90: 87-94. [6] Alobaidy, A. H. M. J., Al-Sameraiy, M. A., Kadhem, A. J. and Majeed, A. A. (2010). Evaluation of treated municipal wastewater quality for irrigation. Journal of Environmental
Protection, 1 (03), 216. [7] Ghafoor, A., Rauf, A. and Arif. M. (1996). Soil and plant
health irrigated with Paharang drain sewage effluents at
Faisalabad. Pakistan. Journal of Agricultural Science, 33: 73–76. [8] Ibrahim, M. and Salmon, S. (1992a). Chemical composition
of Faisalabad city sewage effluents: Nitrogen, phosphorus and potassium contents. Journal of Agricultural Resources, 30: 381-390. [9] Zavadil, J. (2009). The effect of municipal wastewater
irrigation on the yield and quality of vegetables and crops. Soil and Water Resources, 4 (3): 91-103. [10] Pereira, L. S., Cordery, I. and Iacovides, I. (2002). Coping with Water Scarcity. UNESCO, Paris. [11] Saldías, C., Speelman, S., Amerasinghe, P. and Van Huylenbroeck, G. (2015). Institutional and policy analysis of wastewater (re) use for agriculture: case study
Hyderabad, India. Water Science and Technology, 72 (2), 322-331. [12] Kivaisi, A. K. (2001). The potential for constructed wetlands for wastewater treatment and reuse in developing
countries: a review. Ecological engineering, 16 (4), 545-560. [13] Nilsson, C., Renman, G., Westholm, L. J., Renman, A. and
Drizo, A. (2013). Effect of organic load on phosphorus and
bacteria removal from wastewater using alkaline filter materials. Water research, 47 (16), 6289-6297. [14] Sleytr, K., Tietz, A., Langergraber, G. and Haberl, R. (2007). Investigation of bacterial removal during the
filtration process in constructed wetlands. Science of the Total Environment, 380 (1-3), 173-180. [15] Redder, A., Dürr, M., Daeschlein, G., Baeder-Bederski, O., Koch, C., Müller, R. and Borneff-Lipp, M. (2010). Constructed wetlands–Are they safe in reducing protozoan
parasites. International journal of hygiene and
environmental health, 213 (1), 72-77. [16] Morató, J., Codony, F., Sánchez, O., Pérez, L. M., García, J. and Mas, J. (2014). Key design factors affecting microbial
community composition and pathogenic organism removal
in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 481, 81-89. [17] Alufasi, R., Gere, J., Chakauya, E., Lebea, P., Parawira, W. and Chingwaru, W. (2017). Mechanisms of pathogen
removal by macrophytes in constructed wetlands. Environmental Technology Reviews, 6 (1), 135-144. [18] Miranda, N. D., Oliveira, E. L. and Silva, G. H. R. (2014). Study of constructed wetlands effluent disinfected with
ozone. Water science and technology, 70 (1), 108-113. [19] Jenkins, M. W., Tiwari, S. K., and Darby, J. (2011). Bacterial, viral and turbidity removal by intermittent slow
sand filtration for household use in developing countries: Experimental investigation and modeling. Water research, 45 (18), 6227-6239. [20] Huq, A., Xu, B., Chowdhury, M. A., Islam, M. S., Montilla, R. and Colwell, R. R. (1996). A simple filtration method to
remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Applied and
environmental microbiology, 62 (7), 2508-2512. [21] Serpieri, N., Moneti, G., Pieraccini, G., Donati, R., Mariottini, E. and Dolara, P. (2000). Chemical and microbiological characterization of drinking water after
filtration with a domestic-size charcoal column and
ultraviolet sterilization. Urban Water, 2, 13-20
[22] Gao, P., Xu, W., Sontag, P., Li, X., Xue, G., Liu, T. and Sun, W. (2016). Correlating microbial community compositions with environmental factors in activated sludge from four
fullscale municipal wastewater treatment plants in Shanghai, China. Applied Microbiology and Biotechnology, 100 (10), 4663-4673. [23] Rasool, T., Rehman, A., Naz, I., Ullah, R. and Ahmed, S. (2018). Efficiency of a locally designed pilot-scale
trickling biofilter (TBF) system in natural environment for
the treatment of domestic wastewater. Environmental
technology, 39 (10), 1295-1306. [24] Khan, Z. U., Naz, I., Rehman, A., Rafiq, M., Ali, N. and
Ahmed, S. (2015). Performance efficiency of an integrated
stone media fixed biofilm reactor and sand filter for sewage treatment. Desalination and Water Treatment, 54
(10), 2638-2647. [25] WHO. Guidelines for the Safe Use of Wastewater. Excreta
and Greywater in Agriculture. Volume 2. Wastewater Use
in Agriculture; WHO Press: Geneve, Switzerland, 2006. [26] Norton-Brandão, D., Scherrenberg, S. M. and van Lier, J. B. (2013). Reclamation of used urban waters for irrigation
purposes–a review of treatment technologies. Journal of environmental management, 122, 85-98. [27] Khan, S. A., Sharma, G. K., Malla, F. A., Kumar, A. and
Gupta, N. (2019). Microalgae based biofertilizers: a biorefinery approach to phycoremediate wastewater and
harvest biodiesel and manure. Journal of Cleaner production, 211, 1412-1419. [28] FAO. Advances in the Assessment and Monitoring of
Salinization and Status of Biosaline Agriculture. Reports of
Expert Consultation Held in Dubai, United Arab Emirates;
FAO: Rome, Italy, 2007. [29] Pritchard, M., Craven, T., Mkandawire, T., Edmondson, A. S. and O’neill, J. G. (2010). A comparison between Moringa oleifera and chemical coagulants in the purification of drinking water–An alternative sustainable
solution for developing countries. Physics and Chemistry
of the Earth, Parts A/B/C, 35 (13-14), 798-805. [30] Ukpong, E. C. and Agunwamba, J. C. (2012). Dispersion Characteristics of Settleable and Dissolvable Pollutants in Waste Stabilization Ponds. Global Journal of Engineering
Research, 11 (2), 87-98.