Published
2024-01-12
Section
Articles
How to Cite
光合细菌的固定化、资源回收及发展前景综述
申 向禹
华北水利水电大学环境与市政工程学院
孔 志辉
华北水利水电大学环境与市政工程学院
郭 昊祎
华北水利水电大学环境与市政工程学院
王 文霄
华北水利水电大学环境与市政工程学院
DOI: https://doi.org/10.59429/hjfz.v5i12.289
Keywords: 光合细菌;固定化;资源回收
Abstract
光合细菌(PSB)废水处理是一种环境友好、可持续的环境修复和生物资源回收技术。由于 PSB 的固有特性, 包括沉降不足、生物量损失等,必须实施必要的控制策略。废水系统中固定化 PSB 为各种微生物在表面或内部均匀 分布提供了渗透性微环境,并成功地屏蔽了 PSB 免受外界干扰,提高了其生物利用度,从而有效地解决了上述突出 问题。论文介绍了 PSB 中各种固定方式和高价值物质的合成;系统阐述了 PSB 固定化应用瓶颈以及改性;总结了近 年来对 PSB 固定处理新出现污染物的尝试。为微生物固定化技术在废水处理回用中的应用提供参考。
References
[1] 张光明,孟帆,曹可凡,等.光合细菌污水资源化研究进展[J].工业
水处理,2020,40(3):1-6.
[2] Kube M, Fan L, Roddick F. Alginate-immobilised algal
wastewater treatment enhanced by species selection[J]. Algal
Research-Biomass Biofuels and Bioproducts, Amsterdam:
Elsevier,2021(54):102219.
[3] Lim J H K, Gan Y Y, Ong H C, et al. Utilization of microalgae
for bio-jet fuel production in the aviation sector: Challenges
and pe rspective [J ]. Renewable and Sustainable Ene rgy
Reviews,2021(149):111396.
[4] Deng C, Lin R, Kang X, et al. Improving gaseous biofuel yield
from seaweed through a cascading circular bioenergy system
integrating anaerobic digestion and pyrolysis[J]. Renewable and
Sustainable Energy Reviews,2020(128):109895.
[5] Tawfik A, Ali M, Danial A, et al. 2-biofuels (H2 and CH4)
production from anaerobic digestion of biscuits wastewater: Experimental study and techno-economic analysis[J]. Journal of
Water Process Engineering,2021(39):101736.
[6] Puyol D, Batstone D J, Hülsen T, et al. Resource Recovery from
Wastewater by Biological Technologies: Opportunities, Challenges,
and Prospects[J]. Frontiers in Microbiology,2017(7).
[7] Hu X. Application o f alginate immobilized mic roalgae
in treating real food industrial wastewater and design of
annular photobioreactor: A proof-of-concept study[J]. Algal
Research,2021(7).
[8] Jiang Y, Yang F, Dai M, et al. Application of microbial
imm o bilizati o n tec h n ol o g y f o r reme diati o n o f C r (V I )
contamination: A review[J]. Chemosphere,2022(286):131721.
[9] Cheng J, Wu X, Jin B, et al. Coupling o f Immobilized
Photosynthetic Bacteria with a Graphene Oxides/PSF Composite
Membrane for Textile Wastewater Treatment: Biodegradation
Pe r fo rmance and Memb rane Anti -Fouling Behavio r [J ].
Membranes,2021,11(3):226.
[10] Peng M, Xu H, Yang G, et al. Purifying Heavily Polluted River
Water Using Immobilized Native Photosynthetic Bacteria[J].
Journal of Environmental Engineering, Reston: Asce-Amer Soc
Civil Engineers,2021,147(8):04021021.
[11] Sagir E, Alipour S. Photofermentative hydrogen production
by immobilized photosynthetic bacteria: Current perspectives
a n d c halle n ge s [ J ]. Re newa ble a n d S u stai na ble E ne rg y
Reviews,2021(141):110796.
[12] Luo Q, Chen Z, Li Y, et al. Highly Efficient and Recyclable
Shewanella xiamenensis-Grafted Graphene Oxide/Poly(vinyl
alcohol) Biofilm Catalysts for Increased Cr(VI) Reduction[J].
ACS Sustainable Chemistry & Engineering, American Chemical
Society,2019,7(14):12611-12620.
[13] 王翠翠,卢海凤,张光明,等.近红外光对光合细菌利用废水累积高
价值产物的影响[J].工业水处理,2023:1-21.
[14] Fu X, Qiao Y, Xue J, et al. Analyses of community structure
and role of immobilized bacteria system in the bioremediation
process of diesel pollution seawater[J]. Science of The Total
Environment,2021(799):149439.
[15] Zhao W, Zhang G. Optimization of photosynthetic bacteria
wastewater treatment and study of microbial species diversity[J].
Desalination and Water Treatment, Hopkinton: Desalination
Publ,2014,52(28-30):5357-5365.
[16] 姜淑敏,汪吉霞,王悦佳,等.光合细菌产氢研究进展[J].现代农业
科技,2023(19):136-142.
[17] Chandra R, Mohan S V. Enhanced bio-hydrogenesis by co-culturing photosynthetic bacteria with acidogenic process: Augmented darkphoto fermentative hybrid system to regulate volatile fatty acid
inhibition[J]. International Journal of Hydrogen Energy, Oxford:
Pergamon-Elsevier Science Ltd,2014,39(14):7604-7615.
[18] McKinlay J B, Harwood C S. Photobiological production of
hydrogen gas as a biofuel[J]. Current Opinion in Biotechnolo
gy,2010,21(3):244-251.
[19] Narayanan S, Gowthami M. Cyanide degradation by consortium of
bacterial species isolated from Sago industry effluent[J]. Journal of
Environmental Treatment Techniques,2015(3):41-46.
[20] Rezania S, Din M F M, Taib S M, et al. The efficient role of
aquatic plant (water hyacinth) in treating domestic wastewater in
continuous system[J]. International Journal of Phytoremediation,
Philadelphia: Taylor and Francis Inc,2016,18(7):679-685.[21] Lu H, He S, Zhang G, et al. Periodic oxygen supplementation drives
efficient metabolism for enhancing valuable bioresource production
in photosynthetic bacteria wastewater treatment[J]. Bioresource
Technology, Oxford: Elsevier Sci Ltd,2022(347):126678.
[22] Wang C, Wang J, He X, et al. Effective removal of Mn(Ⅱ) from
acidic wastewater using a novel acid tolerant fungi Aspergillus
sp. MF1 via immobilization[J]. Journal of Hazardous Materials
Advances,2023(10):100301.
[23] Behera S, Das S. Environmental impacts of microplastic and role
of plastisphere microbes in the biodegradation and upcycling of
microplastic[J]. Chemosphere,2023(334):138928.
[24] Zhuang S, Wang J. Inte raction between antibiotics and
microplastics: Recent advances and perspective[J]. Science of The
Total Environment,2023(897):165414.