by Ritesh SinghKushwaha, Abhilash Civi, Arman Inamdar, Nilambari Patil, Prof. RachanaChapte
2024,2(2);
44 Views
Abstract
This paper presents the development and evaluation of an Indoor Navigation Application leveraging Augmented Reality (AR) technology to provide accurate and intuitive navigation within complex indoor environments. The primary objective is to enhance user experience by integrating ARCore, NavMesh, and the A* algorithm to ensure precise localization and efficient pathfinding.
The methodology involves creating a comprehensive 3D model of the building using Blender, with QR codes strategically placed throughout the structure to facilitate accurate user localization. Upon scanning a QR code, the system activates the user's camera and employs ARCore for simultaneous localization and mapping (SLAM), aligning the user's position with the 3D model. Real-time navigation is then provided through AR overlays, guiding users along the optimal path determined by the A* algorithm.
The evaluation metrics focus on accuracy, usability, efficiency, reliability, and scalability. The system demonstrates high accuracy in positioning, minimal latency in pathfinding, and consistent performance across diverse indoor environments. User feedback indicates a high level of usability, with intuitive interactions and clear visual cues. The modular design of the system ensures scalability and adaptability to various building configurations.
In conclusion, the AR indoor navigation system offers a robust solution for indoor navigation, with potential applications in commercial complexes, educational institutions, and healthcare facilities. Future work will focus on enhancing accuracy, optimizing user experience, and integrating advanced AR features and IoT devices.
show more