Internal parasitic helminth infecting reared fishes from the West Region of Cameroon: Epidemiological profile and effects on fish health

  • Derrick FabriceNgueguim Department of Fisheries Management, Laboratory of Aquaculture and Demography of Aquatic Resources, Institute of Fisheries and Aquatic Sciences, University of Douala, Douala 7236, Cameroon; Faculty of Agronomy and Agricultural Science, Laboratory of Applied Hydrobiology and Ichtiology, University of Dschang, Dschang 222, Cameroon
  • Marc KenmogneKouam Department of Animal Science, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang 188, Cameroon
  • Georges Fonkwa Department of Aquaculture, Laboratory of Aquaculture and Demography of Aquatic Resources, Institute of Fisheries and Aquatic Sciences, University of Douala, Douala 7236, Cameroon
  • Hermann BiekopFandio Faculty of Agronomy and Agricultural Science, Laboratory of Applied Hydrobiology and Ichtiology, University of Dschang, Dschang 222, Cameroon
  • Jacques Nack Department of Fisheries Management, Laboratory of Aquaculture and Demography of Aquatic Resources, Institute of Fisheries and Aquatic Sciences, University of Douala, Douala 7236, Cameroon
  • Julius Awah-Ndukum Faculty of Agronomy and Agricultural Science, Laboratory of Applied Hydrobiology and Ichtiology, University of Dschang, Dschang 222, Cameroon; College of Technology, University of Bamenda, Bambili 39, Cameroon
Keywords: endoparasites; fish farms; food security; West Cameroon

Abstract

Intensification of the fish farming sector in Cameroon can result to reduction of profitability and public health concerns due to emergence of parasites amongst which zoonotic ones. Unfortunately, limited and outdated data are available on internal parasites of reared fish as well as their impact on the infected fish. A total of 2254 live fish samples of males and females were randomly obtained made up of Clarias gariepinus (692), Cyprinus carpio (593) and Oreochromis niloticus (969). The skin, the gastrointestinal tract of the fish was examined for the presence of parasite, using standard procedures. An overall prevalence of 8.47% coupled with a very low intensity was assessed. This study revealed a diverse parasitic fauna made up of Acanthocephala sp. (4.84%), Cappilaria sp. (1.91%), Eustrongylides sp. (1.06%), Camallanus sp. (1.2%) and Orientatractis sp. (0.34%). Meanwhile, intensities mean values were higher in Cappilaria sp. followed by Eustrongyloides sp., Camallanus sp. and finally Acanthocephalus sp. Prevalence of internal parasites was higher in Cyprinus carpio (8.77%). Clarias Gariepinus on the other hand, had a higher intensity. Fish were mostly infected during the dry season. Nevertheless, a high parasitic load was observed in the rainy season. Specimens collected in the earthen ponds show a higher prevalence (p < 0.05), while those in concrete ponds had a higher infection intensity. Females were more prevalent contrary to males which have a higher intensity. Parasites were identified from the body cavities and gastrointestinal tracts of fishes. Comparison of Length/Weight relationship and Fulton condition index K does not show any differences between the parasitized and non-parasitized specimens. Parasites with a zoonotic potential were detected in this study, highlighting the importance of intensifying biosecurity and parasite control measures in fish farms in West Cameroon.

References

1. Adeosun KP, Ume CO, Ezugwu RU. Analysis of socio-economic factors of fish pond production in Enugu State, Nigeria. Journal of Tropical Agriculture 2019; 57(1): 27–34.

2. Agbabiaka LA, Akande TT, Ekeocha CA. Assessment of parasites associated with African catfish farmed at Owerri federal constituency, Imo State Nigeria. Arboriculture and Biology Journal of North America 2017; 8(5): 168–172.

3. Akinsanya B, Otubanjo OA, Hassan AA. Helminth parasites of Malapterurus Electricus (Malapteruridae) from Lekki Lagoon, Lagos, Nigeria. Journal of American Science 2007; 3(3): 1–5.

4. Akombo PM, Atile JI, Adikwu IA, Araoye PA. Morphometric measurements and growth patterns of four species of the genus Synodontis (cuvier, 1816) from Lower Benue River, Makurdi, Nigeria. International Journal of Fisheries and Aquaculture 2011; 3(15): 263–270. doi: 10.587/IJFA11.111

5. Al-Zubaidy AB. Prevalence and densities of Contracaecum sp. Larvae in Liza abu (Heckel, 1843) from different Iraqi water bodies. Journal of King Abdulaziz University-Marine Science 2009; 20(1): 3–17. doi: 10.4197/Mar.20-1.1

6. Aloo PA. A comparative study of helminthes parasites from the fish tilapia zillii and Oreochromis leucostictus in Lake Naivasha and Oloidien Bay, Kenya. Journal of Helmintholology 2002; 76(2): 95–104. doi: 10.1079/JOH2001105

7. Ashade OO, Osineye OM, Kumoye EA. Isolation, identification and prevalence of parasites on Oreochromis niloticus from three selected River Systems. Journal of Fisheries and Aquatic Science 2013; 8(1): 115–121. doi: 10.3923/fas.2023.115.121

8. Bichi A, Dawaki S. A survey of ectoparasites on the gills, skin and fins of Oreochromis niloticus at Bagauda fish farm, kano, Nigeria. Bayero Journal of Pure and Applied Sciences 2010; 3(1): 83–86. doi: 10.4314/bajopas.v3i1.58720

9. Bilong-Bilong CF, Njine T. Dynamique de populations de trois monogènes parasites de Hemichromis fasciatus (Peters) dans le lac municipal de Yaoundé et intérêt possible en pisciculture intensive. In: Annales de la Faculté des Sciences de l’Université de Yaoundé I. Sér. Sci. Nat. Vie; 1998. pp. 295–303.

10. Biu AA, Diyaware MY, Yakaka W, Joseph E. Survey of parasites infesting the Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) from Lake Alau, Maiduguri, Nigeria. Nigerian Journal of Fisheries and Aquaculture 2014; 2(2): 6–12.

11. Boungou M, Sinaré Y, Mano K, Kabré GB. Parasitic copepods (arthropoda, crustacea, copepoda) from fishes in Burkina Faso, Africa. International Journal of Fisheries and Aquatic Sciences 2013; 2(3): 58–64.

12. Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 1997; 83(4): 575–583. doi: 10.2307/3284227

13. Dekić R, Savić N, Manojlović M, et al. Condition factor and organosomatic indices of rainbow trout (Onchorhynchus mykiss, wal.) from different brood stock. Biotechnology in Animal Husbandry 2016; 32(2): 229–237. doi: 10.2298/BAH1602229D

14. Domwa Mathieu. 2012. Prévalence et intensité d’infestation de Clarias jaensis (Boulenger, 1909) et Clarias gariepinus (Burchell, 1822) par Eustrongylides et Contracaecum dans la plaine des Mbô au Cameroun. Diplôme de Master of Science en Biotechnologie et Productions Animales. Université de Dschang. 82p.

15. Echi PC, Eyo JE, Okafor FC. Co-parasitism and morphometrics of three clinostomatids (Digenea: Clinostomatidae) in Sarotherodon melanotheron from a tropical freshwater lake. Animal Research International 2009; 6(2): 982–986. doi: 10.4314/ari.v6i2.48129

16. Echi PC, Okafor FC, Eyo JE. Co-infection and morphometrics of three clinostomatids (Digenea: Clinostomatidae) in Tilapia guinensis Bleeker, 1862 from Opi lake, Nigeria. Bio-Research 2009; 7(1): 432–436.

17. Efole ET, Mikolasek O, Aubin J, et al. Sustainability of fish pond culture in rural farming systems of Central and Western Cameroon. International Journal of Agricultural Sustainability 2017; 15(2): 208–222. doi: 10.1080/1473503.2016.1211243

18. Ekanem AP, Eyo VO, Sampson AF. Parasite of landed fish from Great Kwa River, Calabar. Cross River, Nigeria. International Journal of Fisheries and Aquaculture 2011; 3(12): 225–230. doi: 10.5897/IJFA11.072

19. Emere MC, Egbe NEL. Protozoan parasites of Synodontis clarias (A fresh water fish). Best Journal 2006; 3(3): 58–64.

20. La Situation Mondiale des Pêches et de L’aquaculture 2016. Contribuer à la Sécurité Alimentaire et à la Nutrition de Tous. FAO; 2016.

21. Dawar FU. Prevalence of parasites in fresh water pond fishes from district DI Khan, Pakistan. The Journal of Zoology Studies 2015; 2(2): 47–50.

22. Fomena A, Bouix G. New species of Henneguya Thehan, 1982 (Myxozoa: Myxosporea) parasites of freshwater fishes in Cameroon. Journal of African Zoology 1996; 110(6): 413–424.

23. Georges F, Jacques N, Julius AN, et al. First report of enteric red plague of Oreochromis niloticus (Cichlidae) and Cyprinus carpio (Cyprinidae) reared in Cameroon: mortality rate, risk factors and financial loss. Research in Agriculture Livestock and Fisheries 2022; 9(3): 323–335.

24. Fonkwa G., Essome MG., Awah-Ndukum J., Tomedi E. M., Tchoumboue and Nack J. 2023. Checklist, occurrence and associated risk factors of parasitic infections of potential farming fish species from the lower course of River Nkam, Cameroon

25. Georges F, Jacques N, Marc KK, et al. Some epidemiological aspects of Myxosporean infections in Oreochromis niloticus (Linnaeus, 1758) and Hemichromis fasciatus (Peters, 1857), two cultured Cichlid fishes in the West - Cameroon. International Journal of Aquaculture and Fishery Sciences 2022; 8(1): 001–009.

26. Ghorbani A, Salamatdoustnobar R, Maghami SSG, Motallebi V. The effect of different levels of prebiotic on the length of fingerling rainbow trout. African Journal of Biotechnology 2012; 11(36): 8928–8931. doi: 10.5897/AJB11.1905

27. Hoffman GL. Parasites of North American Fresh Water Fishes, 2nd ed. Cornell University Press; 1999. p. 539.

28. Hossain MY, Hossen MA, Pramanik MNU, et al. Length–weight and length–length relationships of five Mystus species from the Ganges and Rupsha rivers, Bangladesh. Journal of Applied Ichthyology 2016; 32(5): 994–997. doi: 10.1111/jai.13135

29. Ibiwoye TII, Balogun AM, Ogunsusi RA, Agbontate JJ. Determination of the infection densities of mudfish eustrongylides in Clarias gariepinus and C. anguillaris from Bida floodplain of Nigeria. Journal of Applied Science and Environmental Management 2004; 8(2): 39–44. doi: 10.4314/jasem.v8i2.17238

30. Idris HS, Balarabe-Musa B, Osawe SO. The incidence of endoparasites of Clarias gariepinus (sharp tooth Catfish) (Burchell, 1822) and Oreochromis niloticus (Tilapia fish) (Linnaeus, 1758) in Jeremiah Usein river. International Journal of Biological Sciences 2013; 1(1): 1–5.

31. Ighwela KA, Ahmed AB, Abol-Munafi AB. Condition factor as an indicator of growth and feeding intensity of Nile tilapia fingerlings (Oreochromis niloticus) feed on different levels of maltose. American-Eurasian Journal of Agriculture and Environmental Sciences 2011; 11(4): 559–563.

32. Rapport Annuel des Activités. Institut de Recherche Agricole pour le Développement; 2013.

33. Iyaji FO, Etim L, Eyo JE. Parasite assemblages in fish hosts. Bio-Research 2009; 7(2): 561–570. doi: 10.4314/br.v7i2.56606

34. Jobling M. Environmental factors and rates of development and growth. In: Hart PJB, Reynolds JD. The Handbook of Fish Biology and Fisheries. Wiley-Blackwell; 2002. Volume 1. pp. 97–122.

35. Kabata Z. Parasites and Diseases of Fish Cultured in the Tropics, 1st ed. Taylor & Francis, London; 1985. p. 390.

36. Kawe SM, God’spower RO, Balarabe MR, Akaniru RI. Prevalence of gastrointestinal helminth parasites of Clarias gariepinus in Abuja, Nigeria. Sokoto Journal of Veterinary Sciences 2016; 14(2): 26–33. doi: 10.4314/sokjvs.v14i2.4

37. Kouam MK, Moussala JO. Assessment of factors influencing the implementation of biosecurity measures on pig farms in the Western Highlands of Cameroon (Central Africa). Veterinary Medicine International 2018. doi: 10.1155/2018/9173646

38. Lafferty KD. Ecosystem consequences of fish parasites. Journal of Fish Biology 2008; 73(9): 2083–2093. doi: 10.1111/j.1095-8649.2008.02059.x

39. Lagrue C, Kelly DW, Hicks A, Poulin R. Factors influencing infection patterns of tropically transmitted parasites among a fish community: Host diet, hostparasite compatibility or both? Journal of Fish Biology 2011; 79(2): 466–485. doi: 10.1111/j.1095-8649.2011.03041.x

40. Mbakane EM, Luus-Powel WJ, Matla MM, Theron J. Three dactylogyrids (Dactylogyridae Bychowsky 1933: Monogenea) from selected cyprinid species of the Nwanedi-Luphephe Dams in the Limpopo Province, South Africa. Journal of the South African Veterinary Association 2010; 81(3): 186–187.

41. Moravec F. Reconstruction of the Nematode Genus Rhabdochona Railliet, 1916 with a Review of the Species Parasitic in Fishes of Europe and Asia. Studies CSAV; 1975. pp. 104.

42. Nack J, Fonkwa G, Fanda NJP, et al. Assessment and epidemiological profile of parasites of five fish species with breeding potential from the upper course of The NKAM River (Littoral-Cameroon). International Journal of Progressive Sciences and Technologies 2022; 32(1): 40–56.

43. Ngueguim DF, Kouam MK, Tiogue CT, et al. Prevalence and associated risk factors of ectoparasite infections of cultured fish species in the West region of Cameroon. International Journal of Fisheries and Aquatic Studies 2020; 8(3): 310–320.

44. Nmor JC, Egwunyenga AO, Ake JEG. Observation on the intestinal helminth parasites of cichlid in the upper reaches of River Orogodo, a freshwater body in Delta State, Southern Nigeria. Tropical Freshwater Biology 2023; 12: 131–136. doi: 10.4314/tfb.v12i1.20883

45. Noga EJ. Fish Disease: Diagnosis and Treatment, 2nd ed. Wiley-Blackwell; 2010.

46. Ntsama ISB, Tambe BA, Takadong JJT, et al. Characteristics of fish farming practices and agrochemicals usage therein in four regions of Cameroon. The Egyptian Journal of Aquatic Research 2018; 44(2): 145–153. doi: 10.1016/j.ejar.2018.06.006

47. Obosi K, Agbeja YE. Assessing the Level of Aquaculture Biosecurity Regulations Compliance in Ibadan, Nigeria. Donnish Journal of Agricultural Research 2014; 2(3): 012–019.

48. Ani OC, Nnamonu EI, Ejiogu C. Prevalence of intestinal parasites of fish farmed and harvested in Abakiliki, Nigeria: A pointer to the level of their vulnerability. International Journal of Research in Pharmacy and Biosciences 2017; 4(9): 7–10.

49. Olaoye OJ, Ashley-Dejo SS, Fakoya EO, et al. Assessment of socio-economic analysis of fish farming in Oyo State, Nigeria. Global Journal of Science Frontier Research Agriculture and Veterinary 2013; 13(9): 45–55.

50. Olurin KB, Aderibigbe OA. Length-weight relationship and condition factor of pond reared juvenile Oreochromis niloticus. World Journal of Zoology 2006; 1(2): 82–85.

51. Oniye SJ, Adebote DA, Ayanda OI. Helminth parasites of Clarias gariepinus (Teugels) in Zaria, Nigeria. Journal of Aquatic Sciences 2004; 19(2): 71–76. doi: 10.4314/jas.v19i2.20027

52. Östlund-Nilsson S, Curtis L, Goran EN, Grutter AS. Parasitic isopod Anilocra apogonae, a drag for the cardinal fish Cheilodipterus quinquelineatus. Marine Ecology Progress Series 2005; 287: 209–216. doi: 10.3354/meps287209

53. Osuigwe DI, Obiekezie AI. Assessment of the growth performance and feed utilization of fingering Heterobranchus longifilis fed raw and boiled jackbean (Canavalia ensiformis) seed meal as fish meal substitute. Journal of Fisheries International 2007; 2(1): 37–41.

54. Paperna I. Diseases caused by parasites in the aquaculture of warm water fish. Annual Review of Fish Diseases 1991; 1: 155–194.

55. Paperna I. Parasites, Infections and Diseases of Fishes in Africa. CIFA Technical Paper; 1980.

56. Paperna I. Parasite, Infections and Disease of Fishes in Africa An Update. Food and Agriculture Organization of the United Nations; 1996.

57. Poulin R. Variation in infection parameters among population within parasites species: intrinsic properties versus local factors. International Journal For Parasitology 2006; 36: 877–885. doi: 10.1016/j.ijpara.2006.02.021

58. Prasad G, Ali PHA. Length-weight relationship of a cyprinid fish Puntius filamentosus from Chalakkudy River, Kerala. Zoos’ Print Journal 2007; 22(3): 2637–2638. doi: 10.11609/JoTT.ZPJ.2637-8

59. Roberts RJ. Fish pathology, 3rd ed. Churchill Livingstone; 2001. pp. 270–300.

60. Rohlenova K, Morand S, Hyršl P, et al. Are fish immune systems really affected by parasites? An immunological study of common carp (Cyrinus carpio). Parasites and Vectors 2011; 4(1): 120–138. doi: 10.1186/1756-3305-4-120

61. Sasal P, Morand S, Guegan JF. Parasite species richness for fish of the Mediterranean Sea. Marine Ecology Progress Series 1997; 149: 61–71.

62. Shehata SM, Mohammed RA, Ghanem MH, et al. Impact of the stresses environmental condition on the prevalence of parasite in fresh water aquaculture. Journal of Fisheries Sciences.com 2018; 12(2): 009–019.

63. Simkova A, Lafond T, Ondrackova M, et al. Parasitism, life history traits and immune defense in cyprinid fish from Central Europe. BMC Evolutionary Biology 2008; 8: 29. doi: 10.1186/1471-2148-8-29

64. Solomon SG, Omeji S, Attai AF. Endoparasitic helminths of Bagrus bayad from lower river Benue Makurdi, Nigeria. International Journal of Fisheries and Aquatic Research 2018; 3(3): 50–53.

65. Tchoumboué J. Etude préliminaire de l’incidence d’une espèce non complètement identifiée d’Eustrongylides (nématode) chez les poissons de la retenue d’eau de Bamendjing au Cameroun. Cameroon Bulletin of Animal Production 1992; (1): 48–54.

66. Thompson LC, Larsen R. Fish habitat in freshwater streams. Farm water quality planning series reference sheet 10.3. Available online: https://escholarship.org/uc/item/1872w3xm (accessed on 11 September 2023).

67. Thrusfield M. Veterinary Epidemiology, 3rd ed. Oxford, Blackwell Science Ltd; 2007.

68. Ramdane Z, Amara R, Trilles JP. Impact des parasites sur les performances biologiques de Mullus barbatus barbatus L. In: Proceedings of the INOC-Tischreen University, International conference on Biodiversity of the Aquatic Environment, 2010; 13–15 December 2010; Lattakia, Syria.

Published
2023-12-04
Section
Articles